
Moritz Helias · David Dahmen

Statistical Field 
Theory for 
Neural Networks

Lecture Notes in Physics



Lecture Notes in Physics

Volume 970

Founding Editors

Wolf Beiglböck, Heidelberg, Germany

Jürgen Ehlers, Potsdam, Germany

Klaus Hepp, Zürich, Switzerland

Hans-Arwed Weidenmüller, Heidelberg, Germany

Series Editors

Matthias Bartelmann, Heidelberg, Germany

Roberta Citro, Salerno, Italy

Peter Hänggi, Augsburg, Germany

Morten Hjorth-Jensen, Oslo, Norway

Maciej Lewenstein, Barcelona, Spain

Angel Rubio, Hamburg, Germany

Manfred Salmhofer, Heidelberg, Germany

Wolfgang Schleich, Ulm, Germany

Stefan Theisen, Potsdam, Germany

James D. Wells, Ann Arbor, MI, USA

Gary P. Zank, Huntsville, AL, USA



The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new
developments in physics research and teaching - quickly and informally, but with
a high quality and the explicit aim to summarize and communicate current knowl-
edge in an accessible way. Books published in this series are conceived as bridging
material between advanced graduate textbooks and the forefront of research and to
serve three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic.

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas.

• to be a source of advanced teaching material for specialized seminars, courses
and schools.

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic
formats, the electronic archive being available at springerlink.com. The series
content is indexed, abstracted and referenced by many abstracting and information
services, bibliographic networks, subscription agencies, library networks, and
consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Dr Lisa Scalone
Springer Nature
Physics Editorial Department
Tiergartenstrasse 17
69121 Heidelberg, Germany
lisa.scalone@springernature.com

More information about this series at http://www.springer.com/series/5304

http://www.springer.com/series/5304


Moritz Helias • David Dahmen

Statistical Field Theory
for Neural Networks



Moritz Helias
Institute of Neuroscience and Medicine
(INM-6)
Forschungszentrum Jülich
Jülich, Germany

Faculty of Physics
RWTH Aachen University
Aachen, Germany

David Dahmen
Institute of Neuroscience and Medicine
(INM-6)
Forschungszentrum Jülich
Jülich, Germany

ISSN 0075-8450 ISSN 1616-6361 (electronic)
Lecture Notes in Physics
ISBN 978-3-030-46443-1 ISBN 978-3-030-46444-8 (eBook)
https://doi.org/10.1007/978-3-030-46444-8

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland
AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-46444-8


Dieses Buch ist für Euch, Delia and Dirk —
In Liebe und Dankbarkeit, Moritz.

Als Dank für die unermüdliche
Unterstützung meiner Familie — David.



Preface

Many qualitative features of the emerging collective dynamics in neuronal networks,
such as correlated activity, stability, response to inputs, and chaotic and regular
behavior, can be understood in models that are accessible to a treatment in statistical
mechanics or, more precisely, statistical field theory. These notes attempt at a self-
contained introduction into these methods, explained on the example of neural
networks of rate units or binary spins. In particular, we will focus on a relevant
class of systems that have quenched (time-independent) disorder, mostly arising
from random synaptic couplings between neurons.

Research in theoretical solid-state physics is often motivated by the development
and characterization of new materials, quantum states, and quantum devices. In
these systems, an important microscopic interaction that gives rise to a wealth of
phenomena is the Coulomb interaction: It is reciprocal or symmetric, instantaneous,
and continuously present over time. The interaction in neuronal systems, in contrast,
is directed or asymmetric, delayed, and is mediated by temporally short pulses.
In this view, a neuronal network can be considered as an exotic physical system
that promises phenomena hitherto unknown from solid-state systems with Coulomb
interaction. Formulating neuronal networks in the language of field theory, which
has brought many insights into collective phenomena in solid-state physics, there-
fore opens the exotic physical system of the brain to investigations on a similarly
informative level.

Historically, the idea of a mean-field theory for neuronal networks [1] was
brought into the field by experts who had a background in disordered systems, such
as spin glasses. By the seminal work of Sompolinsky et al. [2] on a deterministic
network of non-linear rate units, this technique entered neuroscience. The reduction
of a disordered network to an equation of motion of a single unit in the background
of a Gaussian fluctuating field with self-consistently determined statistics has since
found entry into many subsequent studies. The seminal work by Amit and Brunel
[3] presents the analogue approach for spiking neuron models, for which to date a
more formal derivation as in the case of rate models is lacking. The counterpart for
binary model neurons [4, 5] follows conceptually the same view.

Unfortunately, the formal origins of these very successful and influential ap-
proaches have only sparsely found entry into neuroscience until today. Part of the
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viii Preface

reason is likely the number of formal concepts that need to be introduced prior to
making this approach comprehensible. Another reason is the lack of introductory
texts into the topic and the unfortunate fact that seminal papers, such as [2], have
appeared in journals with tight page constraints. The functional methods, by which
the results were obtained, were necessarily skipped to cater to a broad audience. As
a consequence, a whole stream of literature has used the outcome of the mean-field
reduction as the very starting point without going back to the roots of the original
work. This situation prohibits the systematic extension beyond the mean-field result.
Recently, an attempt has been made to re-derive the old results using the original
functional methods [6, 7]. Also, a detailed version by the original authors of [2]
became available only decades after the original work [8].

The goal of these notes is to present the formal developments of statistical
field theory to an extent that puts the reader in the position to understand the
aforementioned works and to extend them towards novel questions arising in
neuroscience. Compared to most textbooks on statistical field theory, we here chose
a different approach: We aim at separating the conceptual difficulties from the
mathematical complications of infinite dimensions. The conceptual developments
are presented on examples that have deliberately been chosen to be as simple as
possible: scalar probability distributions. This stochastic viewpoint first introduces
probability distributions and their respective descriptions in terms of moments,
cumulants, and generating functions. Subsequently, we develop all diagrammatic
methods on these toy problems: diagrammatic perturbation theory, the loopwise
expansion, and the effective action formalism. One could call this the field theory
of a number or zero-dimensional fields. This step is, however, not only done for
didactic purposes. Indeed, the pairwise maximum entropy model, or Ising spin
system, can be treated within this framework. Didactically, this approach allows
us to focus on the concepts, which are challenging enough, without the need
of advanced mathematical tools; we only employ elementary tools from analysis
and algebra. Within these parts, we will throughout highlight the connection
between the concepts of statistics, such as probabilities, moments, cumulants to the
corresponding counterparts appearing in the literature of field theory, such as the
action, Green’s functions, and connected Green’s functions.

After these conceptual steps, the introduction of time-dependent systems is only
a mathematical complication. We will here introduce the functional formalism
of classical systems pioneered by Martin et al. [9] and further developed by De
Dominicis [10, 11] and Janssen [12]. This development in the mid-seventies arose
from the observation that elaborated methods existed for quantum systems, which
were unavailable to stochastic classical systems.

Based on the ideas by De Dominicis [13], we then apply these methods
to networks with random connectivity, making use of the randomness of their
connectivity to introduce quenched averages of the moment-generating functional
and its treatment in the large N limit by auxiliary fields [14] to derive the seminal
theory by Sompolinsky et al. [2], which provides the starting point for many current
works. We then present some examples of extensions of their work to current
questions in theoretical neuroscience [7, 15–17].
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The material collected here arose from a lecture held at the RWTH University in
Aachen in the winter terms 2016–2019. Parts of the material have been presented in
a different form at the aCNS Summer School in Göttigen 2016 and the latter part,
namely Chaps. 7 and 10, on the Sparks workshop 2016 in Göttingen. A joint tutorial
with A Crisanti, presented at the CNS*2019 conference in Barcelona, covered the
introductory Chap. 2 as well as Chap. 11 of this material.

Jülich, Germany Moritz Helias
Jülich, Germany David Dahmen
December 2019
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1Introduction

The organization of the outer shell of the mammalian brain, the cerebral cortex,
extends over a wide range of spatial scales, from fine-scale specificity of the connec-
tivity between small assemblies of neurons [1] to hierarchically organized networks
of entire cortical areas [2]. These neuronal networks share many features with
interacting many particle systems in physics. Even if the single neuron dynamics is
rather simple, interesting behavior of networks arises from the interaction of these
many components. As a result, the activity the electrically active tissue of the brain
exhibits is correlated on a multitude of spatial and temporal scales.

Understanding the processes that take place in the brain, we face a funda-
mental problem: We want to infer the behavior of these networks and identify
the mechanisms that process information from the observation of a very limited
number of measurements. In addition, each available measurement comes with its
characteristic constraints. Recordings from single neurons have a high temporal
resolution, but obviously enforce a serious sub-sampling. Today, it is possible to
record from hundreds to thousands of neurons in parallel. Still this is only a tiny
fraction of the number of cells believed to form the fundamental building blocks
of the brain [3]. Alternatively, recordings of the local field potential measure a
mesoscopic collective signal, the superposition of hundreds of thousands to millions
of neurons [4]. But this signal has a moderate temporal resolution and it does
not allow us to reconstruct the activities of individual neurons from which it is
composed.

A way around this dilemma is to build models, constituted of the elementary
building blocks, neurons connected and interacting by synapses. These models then
enable us to bridge from the microscopic neuronal dynamics to the mesoscopic
or macroscopic measurements and, in the optimal case, allow us to constrain the
regimes of operation of these networks on the microscopic scale. It is a basic
biophysical property that single cells receive on the order of thousands of synaptic
inputs. This property may on the one hand seem daunting. On the other hand this
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superposition of many small input signals typically allows the application of the law
of large numbers. If the connectivity in such networks is moreover homogeneous on
a statistical level, a successful route to understanding the collective dynamics is by
means of population equations [5].

Such descriptions are, however, only rarely formally justified from the underlying
microscopic behavior. These phenomenological models present effective equations
of motion for the dynamics on the macroscopic level of neuronal networks.
Typically, intuitive “mean-field” considerations are employed, performing a coarse
graining in space by collecting a set of neurons in a close vicinity into larger groups
described in terms of their average activity. Often this spatial coarse graining is
accompanied by a temporal coarse graining, replacing the pulsed coupling among
neurons by a temporally smooth interaction (see, e.g., Bressloff [5] for a recent
review, esp. section 2 and Ermentrout and Terman [6]). The resulting descriptions
are often referred to as “rate models,” sometimes also as “mean-field models.”
The conceptual step from the microscopic dynamics to the effective macroscopic
description is conceptually difficult. This step therefore often requires considerable
intuition to include the important parts and there is little control as to which
effects are captured and which are not. One might say this approach so far lacks
systematics: It is not based on a classification scheme that allows us to identify
which constituents of the original microscopic dynamics enter the approximate
expressions and which have to be left out. The lack of systematics prohibits the
assessment of their consistency: It is unclear if all terms of a certain order of
approximation are contained in the coarse-grained description. While mean-field
approaches in their simplest form neglect fluctuations, the latter are important to
explain the in-vivo like irregular [7–10] and oscillating activity in cortex [11–13].
The attempt to include fluctuations into mean-field approaches has so far been
performed based on linear response theory around a mean-field solution [14–20].

To overcome the problems of current approaches based on mean-field theory
or ad-hoc approximations, a natural choice for the formulation of a theory of
fluctuating activity of cortical networks is in the language of classical stochastic
fields, as pioneered by Buice and Cowan [21], Buice et al. [22]. Functional or
path integral formulations are ubiquitously employed throughout many fields of
physics, from particle physics to condensed matter [see, e.g., 23], but are still rare in
theoretical neuroscience [see 24–26, for recent reviews]. Such formulations not only
provide compact representations of the physical content of a theory, for example,
in terms of Feynman diagrams or vertex functions, but also come with a rich set
of systematic approximation schemes, such as perturbation theory and loopwise
expansion [23,27]. In combination with renormalization methods [28,29] and, more
recently, the functional renormalization group (Wetterich [30], reviewed in Berges
et al. [31], Gies [32], Metzner et al. [33]), the framework can tackle one of the
hardest problems in physics, collective behavior that emerges from the interaction
between phenomena on a multitude of scales spanning several orders of magnitude.
It is likely that in an analogous way the multi-scale dynamics of neuronal networks
can be treated, but corresponding developments are just about to start [22, 34].



1.1 Code, Numerics, Figures 3

The presentation of these notes consists of three parts. First we introduce
fundamental notions of probabilities, moments, cumulants, and their relation by the
linked cluster theorem, of which Wick’s theorem is the most important special case
in Chap. 2 and Sect. 3.3. The graphical formulation of perturbation theory with the
help of Feynman diagrams will be reviewed in the statistical setting in Chaps. 4 and
5.

The second part extends these concepts to dynamics, in particular stochastic
differential equations in the Ito-formulation, treated in the Martin-Siggia-Rose-De
Dominicis-Janssen path integral formalism in Chaps. 6–9. Employing concepts from
disordered systems, we study networks with random connectivity and derive their
self-consistent dynamic mean-field theory. We employ this formalism to explain the
statistics of the fluctuations in these networks and the emergence of different phases
with regular and chaotic dynamics, including a recent extension of the model to
stochastic units in Chap. 10.

The last part introduces more advanced concepts, the effective action, vertex
functions, and the loopwise expansion in Chaps. 11 and 12. The use of these tools is
illustrated in systematic derivations of self-consistency equations that are grounded
on and going beyond the mean-field approximation. We illustrate these methods
on the example of the pairwise maximum entropy (Ising spin) model, including
the diagrammatic derivation of the Thouless-Anderson-Palmer mean-field theory in
Sect. 11.11.

1.1 Code, Numerics, Figures

The book is accompanied with a set of python scripts that reproduce all quantitative
figures, except Fig. 10.8. This code is publicly available as the Zenodo archive
https://doi.org/10.5281/zenodo.3754062. Some of the exercises have optional parts
that require the reader to implement and check the analytically obtained results
by numerical solutions. This is made for two reasons: First, it is often not trivial
to compare analytical results to numerics; for example, one needs to think about
units, discretization errors, or the number of samples to estimate certain moments.
A work style that combines analytical and numerical results therefore requires
practice—following the numerical exercises, this practice can be obtained. The
second reason is to provide the reader with a starting point for own research projects.
Providing a numerical implementation, for example, for the seminal mean-field
theory [35] and simulation code of random networks as discussed in Chap. 10 lowers
the bar to use these tools for new research projects; the code is identical to the one
used in Ref. [36].

To facilitate reuse, we have released the code under the GNU public license
v3.0. We sincerely hope that this amendment will be of use to the reader and to
the community. When using the code in own publications, please cite this book as
a reference as well as the respective original publication, if it applies—please see
the corresponding headers in the source files for information on the corresponding

https://doi.org/10.5281/zenodo.3754062
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original papers. Any corrections, improvements, and extensions of the code are of
course highly welcome.
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2Probabilities, Moments, Cumulants

Abstract

This chapter introduces the fundamental notions to describe random variables
by a probability distribution, by the moment-generating function, and by the
cumulant-generating function. It, correspondingly, introduces moments and cu-
mulants and their mutual connections. These definitions are key to the subsequent
concepts, such as the perturbative computation of statistics.

2.1 Probabilities, Observables, andMoments

Assume we want to describe some physical system. Let us further assume the state
of the system is denoted as x ∈ R

N . Imagine, for example, the activity of N neurons
at a given time point. Or the activity of a single neuron at N different time points.
We can make observations of the system that are functions f (x) ∈ R of the state of
the system. Often we are repeating our measurements, either over different trials or
we average the observable in a stationary system over time. It is therefore useful to
describe the system in terms of the density

p(y) = lim
ε→0

1

�iεi

〈1{xi∈[yi ,yi+εi ]}〉x
= 〈δ(x − y)〉x,

where the symbol 〈〉 denotes the average over many repetitions of the experiment,
over realizations for a stochastic model, or over time. The indicator function 1x∈S

is 1 if x ∈ S and zero otherwise, and the Dirac δ-distribution acting on a vector is
understood as δ(x) = �N

i=1δ(xi). The symbol p(x) can be regarded as a probability
density, but we will here use it in a more general sense, also applied to deterministic
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6 2 Probabilities, Moments, Cumulants

systems, for example, where the values of x follow a deterministic equation of
motion. It holds that p is normalized in the sense

1 =
∫

p(x) dx. (2.1)

Evaluating for the observable function f the expectation value 〈f (x)〉, we may use
the Taylor representation of f to write

〈f (x)〉 :=
∫

p(x) f (x) dx (2.2)

=
∞∑

n1,...,nN=0

f (n1,...,nN )(0)

n1! · · · nN !
〈
x

n1
1 · · · xnN

N

〉

=
∞∑

n=0

N∑
i1,...,in=1

f
(n)
i1···in (0)

n!

〈
n∏

l=1

xil

〉
,

where we denoted by f (n1,...,nN )(x) := (
∂

∂x1

)ni · · · ( ∂
∂xN

)nN f (x) the n1-th to
nN -th derivative of f by its arguments; the alternative notation for the Taylor
expansion denotes the n-th derivative by n (possibly) different x as f

(n)
i1···in (x) :=∏n

l=1
∂

∂xil
f (x).

We see that the two representations of the Taylor expansion are identical, because
each of the indices i1, . . . , in takes on any of the values 1, . . . , N . Hence there are(

n

nk

)
combinations that yield a term x

nk

k , because this is the number of ways by

which any of the n indices il may take on the particular value il = k. So we get a

combinatorial factor 1
n!

(
n

nk

)
= 1

(n−nk)!nk ! . Performing the same consideration for

the remaining N − 1 coordinates brings the third line of (2.2) into the second.
In (2.2) we defined the moments as

〈
x

n1
1 · · · xnN

N

〉 :=
∫

p(x) x
n1
1 · · · xnN

N dx (2.3)

of the system’s state variables. Knowing only the latter, we are hence able to evaluate
the expectation value of arbitrary observables that possess a Taylor expansion.

Alternatively, we may write our observable f in its Fourier representation

f (x) = F−1
[
f̂
]
(x) = 1

(2π)N

∫
f̂ (ω) eiωTx dω so that we get for the expectation
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value

〈f (x)〉 = 1

(2π)N

∫
f̂ (ω)

∫
p(x) eiωTx dx dω

= 1

(2π)N

∫
f̂ (ω)

〈
eiωTx

〉
x
dω, (2.4)

where ωTx =∑N
i=1 ωixi denotes the Euclidean scalar product.

We see that we may alternatively determine the function 〈eiωTx〉x for all ω to
characterize the distribution of x, motivating the definition

Z(j) :=
〈
ejTx

〉
x

=
∫

p(x) ejTx dx. (2.5)

Note that we can express Z as the Fourier transform of p, so it is clear that it
contains the same information as p (for distributions p for which a Fourier transform
exists). The function Z is called the characteristic function or moment-generating
function [1, p. 32]. The argument j of the function is sometimes called the “source”,
because in the context of quantum field theory, these variables correspond to
particle currents. We will adapt this customary name here, but without any physical
implication. The moment-generating function Z is identical to the partition function
Z in statistical physics, apart from the lacking normalization of the latter. From the
normalization (2.1) and the definition (2.5) follows that

Z(0) = 1. (2.6)

We may wonder how the moments, defined in (2.3), relate to the characteristic
function (2.5). We see that we may obtain the moments by a simple differentiation
of Z as

〈
x

n1
1 · · · xnN

N

〉 =
{

N∏
i=1

∂
ni

i

}
Z(j)

∣∣∣∣∣
j=0

, (2.7)

where we introduced the short hand notation ∂
ni

i = ∂ni

∂j
ni
i

and set j = 0 after

differentiation. Conversely, we may say that the moments are the Taylor coefficients
of Z, from which follows the identity

Z(j) =
∑

n1,...,nN

〈
x

n1
1 . . . x

nN

N

〉
n1! . . . nN ! j

n1
1 . . . j

nN

N .
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2.2 Transformation of RandomVariables

Often one knows the statistics of some random variable x but would like to know
the statistics of y, a function of x

y = f (x).

The probability densities transform as

py(y) =
∫

dx px(x) δ(y − f (x)).

It is obvious that the latter definition of py is properly normalized: integrating
over all y, the Dirac distribution reduces to a unit factor so that the normalization
condition for px remains. What does the corresponding moment-generating function
look like?

We obtain it directly from its definition (2.5) as

Zy(j) = 〈ejTy
〉
y

=
∫

dy py(y) ejTy

=
∫

dy

∫
dx px(x) δ(y − f (x)) ejTy

=
∫

dx px(x) ejTf (x)

= 〈ejTf (x)
〉
x
,

where we swapped the order of the integrals in the third line and performed the
integral over y by employing the property of the Dirac distribution. The dimension
of the vector y ∈ R

N ′
may in general be different from the dimension of the vector

x ∈ R
N . In summary, we only need to replace the source term jTx → jTf (x) to

obtain the transformed moment-generating function.

2.3 Cumulants

For a set of independent variables the probability density factorizes as pindep.(x) =
p1(x1) · · ·pN(xN). The characteristic function, defined by (2.5), then factorizes as
well Zindep.(j ) = Z1(j1) · · ·ZN(jN). Considering the k-point moment, the k-th
(k ≤ N) moment 〈x1 . . . xk〉 = 〈x1〉 . . . 〈xk〉, where individual variables only appear
in single power, decomposes into a product of k first moments of the respective
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variables. We see in this example that the higher order moments contain information
which is already contained in the lower order moments.

One can therefore ask if it is possible to define an object that only contains
the dependence at a certain order and removes all dependencies that are already
contained in lower orders. The observation that the moment-generating function in
the independent case decomposes into a product leads to the idea to consider its
logarithm

W(j) := ln Z(j), (2.8)

because for independent variables it consequently decomposes into a sum
W indep.(j ) = ∑

i ln Zi(ji). The Taylor coefficients of W indep. therefore do not
contain any mixed terms, because ∂k∂lW

indep.
∣∣
j=0 = 0 ∀k 
= l. The same is

obviously true for higher derivatives. This observation motivates the definition of
the cumulants as the Taylor coefficients of W

〈〈xn1
1 . . . x

nN

N 〉〉 :=
{

N∏
i=1

∂
ni

i

}
W(j)

∣∣∣∣∣
j=0

, (2.9)

which we here denote by double angular brackets 〈〈◦〉〉. For independent variables,
as argued above, we have 〈〈x1 . . . xN 〉〉indep. = 0.

The function W defined by (2.8) is called the cumulant-generating function.
We may conversely express it as a Taylor series

W(j) = ln Z(j) =
∑

n1,...,nN

〈〈xn1
1 . . . x

nN

N 〉〉
n1! . . . nN ! j

n1
1 . . . j

nN

N . (2.10)

The cumulants are hence the Taylor coefficients of the cumulant-generating func-
tion. The normalization (2.6) of Z(0) = 1 implies

W(0) = 0.

For the cumulants this particular normalization is, however, not crucial, because
a different normalization Z̃(j) = C Z(j) would give an inconsequential additive
constant W̃ (j) = ln(C) + W(j). The normalization therefore does not affect the
cumulants, which contain at least one derivative. The definition W(j) := ln Z(j)

for a partition function Z would hence lead to the same cumulants. In statistical
physics, this latter definition of W corresponds to the free energy [2].
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2.4 Connection BetweenMoments and Cumulants

Since both, moments and cumulants, characterize a probability distribution one may
wonder if and how these objects are related. The situation up to this point is this:

We know how to obtain the moment-generating function Z from the probability
p, and the cumulant-generating function from Z by the logarithm. The moments
and cumulants then follow as Taylor coefficients from their respective generating
functions. Moreover, the moments can also directly be obtained by the definition
of the expectation value. What is missing is a direct link between moments and
cumulants. This link is what we want to find now.

To this end we here consider the case of N random variables x1, . . . , xN . At first
we restrict ourselves to the special case of the k-point moment (1 ≤ k ≤ N)

〈x1 · · · xk〉 = ∂1 · · · ∂k Z(j)|j=0 , (2.11)

where individual variables only appear in single power.
It is sufficient to study this special case, because a power of xn with n > 1

can be regarded by the left-hand side of (2.11) as the n-fold repeated occurrence
of the same index. We therefore obtain the expressions for repeated indices by first
deriving the results for all indices assumed different and setting indices identical in
the final result. We will come back to this procedure at the end of the section.

Without loss of generality, we are here only interested in k-point moments with
consecutive indices from 1 to k, which can always be achieved by renaming the
components xi . We express the moment-generating function using (2.8) as

Z(j) = exp(W(j)).

Taking derivatives by j as in (2.11), we anticipate due to the exponential function
that the term exp(W(j)) will be reproduced, but certain pre-factors will be
generated. We therefore define the function fk(j) as the prefactor appearing in the
k-fold derivative of Z(j) as

∂1 · · · ∂k Z(j) = ∂1 · · · ∂k exp(W(j))

=: fk(j) exp(W(j)).
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Obviously due to (2.11) and exp(W(0)) = 1, the function evaluated at zero is the
k-th moment

fk(0) = 〈x1 · · · xk〉.

We now want to obtain a recursion formula for fk by applying the product rule as

∂k

(
fk−1(j) exp(W(j))

)
︸ ︷︷ ︸

∂1···∂k−1 Z(j)

product rule= (∂kfk−1 + fk−1 ∂kW)︸ ︷︷ ︸
fk

exp(W(j)),

from which we obtain

fk = ∂kfk−1 + fk−1 ∂kW. (2.12)

The explicit first three steps lead to (starting from f1(j) ≡ ∂1W(j))

f1 = ∂1W (2.13)

f2 = ∂1∂2W + (∂1W) (∂2W)

f3 = ∂1∂2∂3W

+ (∂1W) (∂2∂3W) + (∂2W) (∂1∂3W) + (∂3W) (∂1∂2W)

+ (∂1W) (∂2W) (∂3W) .

The structure shows that the moments are composed of all combinations of
cumulants of all lower orders. More specifically, we see that

• the number of derivatives in each term is the same, here three
• the three derivatives are partitioned in all possible ways to act on W , from all

derivatives acting on the same W (first term in last line) to each acting on a
separate W (last term).

Figuratively, we can imagine these combinations to be created by having k places
and counting all ways of forming n subgroups of sizes l1, . . . , ln each, so that l1 +
· · · + ln = k. On the example k = 3 we would have

〈1 2 3〉 = 〈〈1 2 3〉〉︸ ︷︷ ︸
n=1 l1=3

+ 〈〈1〉〉〈〈2 3〉〉 + 〈〈2〉〉〈〈3 1〉〉 + 〈〈3〉〉〈〈1 2〉〉︸ ︷︷ ︸
n=2; l1=1≤l2=2

+ 〈〈1〉〉〈〈2〉〉〈〈3〉〉︸ ︷︷ ︸
n=3; l1=l2=l3=1

.



12 2 Probabilities, Moments, Cumulants

We therefore suspect that the general form can be written as

fk =
k∑

n=1

∑
{1 ≤ l1 ≤ . . . ,≤ ln ≤ k}∑

i li = k

(2.14)

×
∑

σ∈P({li},k)

(
∂σ(1) · · · ∂σ(l1)W

)
. . .
(
∂σ(k−ln+1) · · · ∂σ(k)W

)
,

where the sum over n goes over all numbers of subsets of the partition, the sum

∑
{1 ≤ l1 ≤ . . . ,≤ ln ≤ k}∑

i li = k

goes over all sizes l1, . . . , ln of each subgroup, which we can assume to be ordered
by the size li , and P({li}, k) is the set of all permutations of the numbers 1, . . . , k

that, for a given partition {1 ≤ l1 ≤ . . . ≤ ln ≤ k}, lead to a different term:
Obviously, the exchange of two indices within a subset does not cause a new term,
because the differentiation may be performed in arbitrary order.

The proof of (2.14) follows by induction. Initially we have f1 = ∂1W which
fulfills the assumption (2.14), because there is only one possible permutation.
Assuming that in the k-th step (2.14) holds, the k + 1-st step follows from the
application of the product rule for the first term on the right of (2.12) acting on
one term of (2.14)

∂k+1
(
∂σ(1) · · · ∂σ(l1)W

)
. . .
(
∂σ(

∑
i<n li+1) · · · ∂σ(k)W

)

=
n∑

j=1

(
∂σ(1) · · · ∂σ(l1)W

)
. . .
(
∂k+1∂σ(

∑
i<j li+1) · · · ∂σ(

∑
i≤j li )W

)

. . .
(
∂σ(

∑
i<n li+1) · · · ∂σ(k)W

)
,

which combines the additional derivative with each of the existing terms in turn.
Therefore, all terms together have k + 1 derivatives and no term exists that has a
factor ∂k+1W , because fk already contained only derivatives of W , not W alone.
The second term in (2.12) multiplies ∂k+1W with fk , containing all combinations
of order k. So the two terms together generate all combinations of the form (2.14),
proving the assumption.
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Setting all sources to zero j1 = · · · = jk = 0 leads to the expression for the k-th
moment by the 1st, . . . , k-point cumulants

〈x1 · · · xk〉 =
k∑

n=1

∑
{1 ≤ l1 ≤ . . . ,≤ ln ≤ k}∑

i li = k

(2.15)

×
∑

σ∈P({li},k)

〈〈xσ(1) · · · xσ(l1)〉〉 · · · 〈〈xσ(k−ln+1) · · · xσ(k)〉〉.

• So the recipe to determine the k-th moment is: Draw a set of k points, partition
them in all possible ways into disjoint subsets (using every point only once). Now
assign, in all possible ways that lead to a different composition of the subgroups,
one variable to each of the points in each of these combinations. The i-th subset
of size li corresponds to a cumulant of order li . The sum over all such partitions
and all permutations yields the k-th moment expressed in terms of cumulants of
order ≤ k.

We can now return to the case of higher powers in the moments, the case that m ≥ 2
of the xi are identical. Since the appearance of two differentiations by the same
variable in (2.11) is handled in exactly the same way as for k different variables, we
see that the entire procedure remains the same: In the final result (2.15) we just have
m identical variables to assign to different places. All different assignments of these
variables to positions need to be counted separately.

2.5 Problems

(a) Cumulants

Calculate the moment-generating function and the cumulant-generating function for

1. the Gaussian distribution p(x) = 1√
2πσ

e
− (x−μ)2

2σ2 ; determine all cumulants of the

distribution; (2 points)
2. the binary distribution p(x) = (1 − m) δ(x) + m δ(x − 1) with mean m ∈

[0, 1]; determine the first three cumulants expressed in m, verify that the first
two correspond to the mean and the variance; (2 points).
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(b) Sums of RandomVariables, Central Limit Theorem, Large
Deviations

Let xi be distributed according to some law p(x) and i = 1, . . . , N . Let us consider
the empirical average SN = 1

N

∑N
i=1 xi . Assume that the xi are independently and

identically distributed (i.i.d.). Let us further assume that we know this distribution
in terms of its cumulants κn := 〈〈xn

i 〉〉 for all n. We assume that all these cumulants
are finite numbers.

What is the average value of SN ? (1 point).
To obtain the higher cumulants of SN , first show that ZSN (j) = Zx(

j
N

, . . . ,
j
N

)

i.i.d=
[
Z1(

j
N

)
]N

, where Zx(j1, . . . , jN ) is the moment-generating function of the

vector x in the general case and Z1(j) is the moment-generating function of a single
variable xi in the i.i.d. case. Derive the corresponding relation for W(j) and W1(j).
(2 points)

Using the latter result, show that the n-th cumulant of SN is 〈〈Sn
N 〉〉 = κn

Nn−1 . (1
point).

Show that the probability for observing a value SN = a obeys a so-called large-

deviation result: in the large N limit we have p(a) ∝ exp(−N
(a−κ1)

2

2 κ2
); for large

N the distribution is strongly peaked around the expectation value κ1, proving the
central limit theorem for this case. Hint: Use the result for Z from exc. (a)(1.) above.
(2 points).

Optional How does this result change in the presence of correlations between pairs
of variables; assume that cumulants κ

i 
=j

2 = 〈〈xixj 〉〉 
= 0 ∀i 
= j? Hint: Derive
a relation between WSN and Wx(j1, . . . , jN) and use that cumulants are the Taylor
coefficients of W . How do the pairwise cumulants modify the large-deviation result
? (3 additional points)
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3Gaussian Distribution andWick’s Theorem

Abstract

We will now study a special case of a distribution that plays an essential role in all
further development, the Gaussian distribution. In a way, field theory boils down
to a clever reorganization of Gaussian integrals. In this section we will therefore
derive fundamental properties of this distribution. The diagrammatic perturbative
methods to be developed in subsequent chapters rely on these elementary
properties: The lines in Feynman diagrams represent second cumulants of
Gaussian distributions.

3.1 Gaussian Distribution

A Gaussian distribution of N centered (mean value zero) variables x is defined for
a positive definite symmetric matrix A as

p(x) ∝ exp
(

− 1

2
xTAx

)
. (3.1)

A more general formulation for symmetry is that A is self-adjoint with respect to
the Euclidean scalar product (see Sect. 3.5). As usual, positive definite means that
the bi-linear form xT A x > 0 ∀x 
= 0. Positivity equivalently means that all
eigenvalues λi of A are positive. The properly normalized distribution is

p(x) = det(A)
1
2

(2π)
N
2

exp

(
−1

2
xTAx

)
; (3.2)

this normalization factor is derived in Sect. 3.6.
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3.2 Moment and Cumulant-Generating Function of a Gaussian

The moment-generating function Z(j) follows from the definition (2.5) for the
Gaussian distribution (3.2) by the substitution y = x − A−1j , which is the N-
dimensional version of the “completion of the square.” With the normalization

C = det(A)
1
2

(2π)
N
2

we get

Z(j) =
〈
ejTx

〉
x

(3.3)

= C

∫
�idxi exp

⎛
⎜⎜⎜⎝−1

2
xTAx + jTx︸︷︷︸

1
2

(
A−1 j

)T
A x+ 1

2 xTA
(
A−1 j

)

⎞
⎟⎟⎟⎠

= C

∫
�idxi exp

⎛
⎜⎜⎜⎝−1

2

(
x − A−1j

)T

︸ ︷︷ ︸
yT

A
(
x − A−1j

)
︸ ︷︷ ︸

y

+1

2
jT A−1 j

⎞
⎟⎟⎟⎠

= C

∫
�idyi exp

(
− 1

2
yTA y

)
︸ ︷︷ ︸

=1

exp
(1

2
jT A−1 j

)

= exp
(1

2
jT A−1 j

)
.

The integral measures do not change from the third to the fourth line, because we
only shifted the integration variables. We used from the fourth to the fifth line that
p is normalized, which is not affected by the shift, because the boundaries of the
integral are infinite. The cumulant-generating function W(j) defined by Eq. (2.8)
then is

W(j) = ln Z(j)

= 1

2
jTA−1 j. (3.4)

Hence the second-order cumulants are

〈〈xixj 〉〉 = ∂i∂jW
∣∣
j=0 (3.5)

= A−1
ij ,
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where the factor 1
2 is canceled, because, by the product rule, the derivative first acts

on the first and then on the second j in (3.4), both of which yield the same term due
to the symmetry of A−1T = A−1 (The symmetry of A−1 follows from the symmetry
of A, because 1 = A−1A = ATA−1T = A A−1T; because the inverse of A is unique
it follows that A−1T = A−1).

All cumulants other than the second order (3.5) vanish, because (3.4) is already
the Taylor expansion of W , containing only second-order terms and the Taylor
expansion is unique. This property of the Gaussian distribution will give rise to
the useful theorem by Wick in the following subsection.

Equation (3.5) is of course the covariance matrix, the matrix of second cumu-
lants. We therefore also write the Gaussian distribution as

x ∼ N(0, A−1),

where the first argument 0 refers to the vanishing mean value.

3.3 Wick’s Theorem

For the Gaussian distribution introduced in Sect. 3.1, all moments can be expressed
in terms of products of only second cumulants of the Gaussian distribution. This
relation is known as Wick’s theorem [1, 2].

Formally this result is a special case of the general relation between moments and
cumulants (2.15): In the Gaussian case only second cumulants (3.5) are different
from zero. The only term that remains in (2.15) is hence a single partition in
which all subgroups have size two, i.e. l1 = · · · = ln = 2; each such sub-group
corresponds to a second cumulant. In particular it follows that all moments with
odd power k of x vanish. For a given even k, the sum over all σ ∈ P [{2, . . . , 2}](k)

includes only those permutations σ that lead to different terms

〈x1 · · · xk〉x∼N(0,A−1) =
∑

σ∈P({2,...,2},k)

〈〈xσ(1)xσ(2)〉〉 · · · 〈〈xσ(k−1)xσ(k)〉〉

(3.5)=
∑

σ∈P({2,...,2},k)

A−1
σ(1)σ (2) · · · A−1

σ(k−1)σ (k). (3.6)

We can interpret the latter equation in a simple way: To calculate the k-th moment
of a Gaussian distribution, we need to combine the k variables in all possible, distinct
pairs and replace each pair (i, j) by the corresponding second cumulant 〈〈xixj 〉〉 =
A−1

ij . Here “distinct pairs” means that we treat all k variables as different, even
if they may in fact be the same variable, in accordance to the note at the end of
Sect. 2.4. In the case that a subset of n variables of the k are identical, this gives rise
to a combinatorial factor. Figuratively, we may imagine the computation of the
k-th moment as composed out of the so-called contractions: Each pair of variables
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is contracted by one Gaussian integral. This is often indicated by an angular bracket
that connects the two elements that are contracted. In this graphical notation, the
fourth moment 〈x1x2x3x4〉 of an N dimensional Gaussian can be written as

〈x1x2x3x4〉x∼N(0,A−1) =x1x2x3x4 + x1x2x3x4 + x1x2x3x4

=〈〈x1x2〉〉〈〈x3x4〉〉 + 〈〈x1x3〉〉〈〈x2x4〉〉 + 〈〈x1x4〉〉〈〈x2x3〉〉
=A−1

12 A−1
34 + A−1

13 A−1
24 + A−1

14 A−1
23 . (3.7)

To illustrate the appearance of a combinatorial factor, we may imagine the example
that all x1 = x2 = x3 = x4 = x in the previous example are identical. We see from
Eq. (3.7) by setting all indices to the same value that we get the same term three
times in this case, namely

〈
x4〉 = 3 〈〈x2〉〉2.

3.4 Graphical Representation: Feynman Diagrams

An effective language to express contractions, such as Eq. (3.7), is the use of
Feynman diagrams. The idea is simple: Each contraction of a centered Gaussian
variable is denoted by a straight line that we define as

〈xixj 〉x∼N(0,A−1) = 〈〈xixj 〉〉 = A−1
ij = xixj =: i

�
j

,

in field theory also called the bare propagator between i and j . In the simple
example of a multinomial Gaussian studied here, we do not need to assign any
direction to the connection.

A fourth moment in this notation would read

〈x1x2x3x4〉x∼N(0,A−1) =
1
�

2

3
�

4

+
1
�

3

2
�

4

+
1
�

4

2
�

3

= A−1
12 A−1

34 + A−1
13 A−1

24 + A−1
14 A−1

23 .

If all x are identical, we can derive this combinatorial factor again in an intuitive
manner: We fix one “leg” of the first contraction at one of the four available x. The
second leg can then choose from the three different remaining x to be contracted. For
the remaining two x there is only a single possibility left. So in total we have three
different pairings. The choice of the initial leg among the four x does not count as an
additional factor, because for any of these four initial choices, the remaining choices
would lead to the same set of pairings, so that we would count the same contractions
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four times. These four initial choices hence do not lead to different partitions of the
set in Eq. (3.6). The factor three from this graphical method of course agrees to the
factor three we get by setting all indices 1, . . . , 4 equal in Eq. (3.7). Hence, we have
just calculated the fourth moment of a one-dimensional Gaussian with the result

〈
x4〉

x∼N = 3〈〈x2〉〉.

3.5 Appendix: Self-Adjoint Operators

We denote as (x, y) a scalar product. We may think of the Euclidean scalar product
(x, y) = ∑N

i=1 xiyi as a concrete example. The condition for symmetry of A can
more accurately be stated as the operator A being self-adjoint. In general, the adjoint
operator is defined with regard to a scalar product (·, ·) as

(x,A y)
def. adjoint=: (

AT x, y
) ∀x, y.

An operator is self-adjoint, if AT = A.

If a matrix A is self-adjoint with respect to the Euclidean scalar product
(·, ·), its diagonalizing matrix U has orthogonal column vectors with respect
to the same scalar product, because from the general form of a basis change

into the eigenbasis diag({λi}) = U−1 A U follows that (U−1T, A U)
def. of adjoint=

(AT U−1T, U)
symm. of (·,·)= (U,AT U−1T)

A self. adj.= (U,A U−1T). So the column
vectors of U−1T need to be parallel to the eigenvectors of A, which are the column
vectors of U , because eigenvectors are unique up to normalization. If we assume
them normalized we hence have U−1T = U or U−1 = UT. It follows that
(Uv,Uw) = (v,UTU w) = (v,w), the condition for the matrix U to be unitary
with respect to (·, ·), meaning its transformation conserves the scalar product.

3.6 Appendix: Normalization of a Gaussian

The equivalence between positivity and all eigenvalues being positive follows from
diagonalizing A by an orthogonal transform U

diag({λi}) = UT A U,

where the columns of U are the eigenvectors of A (see Sect. 3.5 for details). The
determinant of the orthogonal transform, due to U−1 = UT is | det(U)| = 1,
because 1 = det(1) = det(UTU) = det(U)2. The orthogonal transform therefore
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does not affect the integration measure. In the coordinate system of eigenvectors v

we can then rewrite the normalization integral as

∫ ∞

−∞
�idxi exp

(
− 1

2
xTAx

)

x=U v=
∫ ∞

−∞
�kdvk exp

(
− 1

2
vTUTAUv

)

=
∫ ∞

−∞
�kdvk exp

(
− 1

2

∑
i

λiv
2
i

)

= �k

√
2π

λk

= (2π)
N
2 det(A)−

1
2 ,

where we used in the last step that the determinant of a matrix equals the product of
its eigenvalues.
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4Perturbation Expansion

Abstract

This chapter introduces the perturbation expansion as a means to approximately
calculate the moment-generating function for theories that contain a solvable part
and a small perturbation. The general concept of an action allows the definition of
an interaction potential that introduces corrections, which can be systematically
calculated via Taylor expansions and expectation values with regard to the
solvable part of the theory. Diagrammatic rules for Gaussian solvable theories
are presented to organize perturbation expansions using Feynman diagrams. The
general rules are exemplified using a “φ3 + φ4” theory.

4.1 Solvable Theories with Small Perturbations

In the previous chapter, we studied the Gaussian distribution and derived an exact
expression for its moment-generating function (3.3). In general, for non-Gaussian
probability distributions, such exact solutions of the generating functions cannot be
obtained. Indeed, only very few problems can be solved exactly. We therefore rely
on perturbative methods to evaluate the quantities of physical interest, the moments
and cumulants. One such method follows the known avenue of a perturbation
expansion: If a part of the problem is solvable exactly, we can try to obtain
corrections in a perturbative manner, if the additional parts of the theory are small
compared to the solvable part.

First, we introduce a new concept, which we call the action S(x). It is just another
way to express the probability distribution. The main difference is that the notation
using the action typically does not care about the proper normalization of p(x),
because the two are related by

p(x) ∝ exp(S(x)).
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22 4 Perturbation Expansion

We will see in the sequel that the normalization can be taken care of diagrammati-
cally. We saw an example of an action in the last section in (3.1): The action of the
Gaussian is S(x) = − 1

2xTAx.
Replacing p(x) by exp(S(x)) in the definition of the moment-generating func-

tion (2.5), we will call the latter Z(j). We therefore obtain the normalized
moment-generating function as

Z(j) = Z(j)

Z(0)
, (4.1)

Z(j) =
∫

dx exp
(
S(x) + jTx

)
.

We here denote as Z the unnormalized partition function, for which in general
Z(0) 
= 1 and Z is the properly normalized moment-generating function that obeys
Z(0) = 1.

As initially motivated, let us assume that the problem can be decomposed into
a part S0(x), of which we are able to evaluate the partition function Z0(j) exactly,
and a perturbing part εV (x) as

S(x) = S0(x) + εV (x).

We here introduced the small parameter ε that will serve us to organize the
perturbation expansion. Concretely, we assume that we are able to compute the
integral

Z0(j) =
∫

dx exp
(
S0(x) + jTx

)
. (4.2)

As an example we may think of S0(x) = − 1
2xTAx, a Gaussian distribution (3.1).

We are, however, not restricted to perturbations around a Gaussian theory, although
this will be the prominent application of the method presented here and in fact in
most applications of field theory. The entire partition function can be written as

Z(j) =
∫

dx exp
(
S0(x) + εV (x) + jTx

)

=
∫

dx exp
(
εV (x) + jTx

)
exp (S0(x)) , (4.3)

where all terms of the action that are not part of the solvable theory are contained
in the potential V (x). The name “potential” is here chosen in reminiscence of the
origin of the term in interacting systems, where the pairwise potential, mediating the
interaction between the individual particles, is often treated as a perturbation. For
us, V is just an arbitrary smooth function of the N-dimensional vector x of which
we will assume that a Taylor expansion exists.
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The form of Eq. (4.3) shows that we may interpret the moment-generating
function as the ratio of expectation values

Z(j) =
〈
exp

(
εV (x) + jTx

) 〉
0

〈exp (εV (x))〉0
, (4.4)

where 〈. . .〉0 = ∫
dx . . . exp(S0(x)) is the “expectation value” with respect to our

solvable theory (4.2) at j = 0 [see also Peierls method in ref. 1, p. 164]; note that,
due to the lack of normalization, the latter is not a proper expectation value, though.
Since we assumed that (4.2) can be computed, we may obtain all expectation values
from Z0 as

〈x1 · · · xk〉0 = ∂1 · · · ∂kZ0(j)

∣∣∣
j=0

.

Recalling our initial motivation to introduce moments in Sect. 2.1, we immediately
see that the problem reduces to the calculation of all moments 〈· · · 〉0 appearing as a
result of a Taylor expansion of the terms exp(εV (x)) and exp(εV (x) + jTx).

We also note that if we are after the cumulants obtained from the cumulant-
generating function W , we may omit the normalization factor 〈exp (εV (x))〉0,
because

W(j) = ln Z(j) = lnZ(j) − lnZ(0).

Since the cumulants, by Eq. (2.10), are derivatives of W , the additive constant term
− lnZ(0) does not affect their value.

4.2 Special Case of a Gaussian Solvable Theory

Now we will specifically study the Gaussian theory as an example for the solvable
part of the theory, so we assume that Z0 = C Z0 in Eq. (4.2) is of Gaussian
form (3.3)

Z0(j) = exp

(
1

2
jT A−1 j

)
,

because this special case is fundamental for the further developments. In calcu-
lating the moments that contribute to Eq. (4.4), we may hence employ Wick’s
theorem (3.6). Let us first study the expression we get for the normalization factor
Z(0).
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We get with the series representation exp(εV (x)) = 1 + εV (x) + ε2

2! V
2(x) +

O(ε3) the lowest order approximation Z0(j) and correction terms ZV (j) from
Eq. (4.4) as

Z(0) = Z0(0) + ZV (0)

ZV (0) :=
〈
εV (x) + ε2

2! V
2(x) + . . .

〉
0
. (4.5)

In deriving the formal expressions, our aim is to obtain graphical rules to perform
the expansion. We therefore write the Taylor expansion of the potential V as

V (x) =
∑

n1,...,nN

V (n1,...nN )

n1! · · · nN ! x
n1
1 · · · xnN

N (4.6)

=
∞∑

n=0

N∑
i1,...,in=1

V
(n)
i1···in
n!

n∏
k=1

xik ,

where V (n1,...nN ) = ∂n1+...+nN V (0)

∂
n1
1 ···∂nN

N

are the derivatives of V evaluated at x = 0 and

V
(n)
i1···in = ∂nV (0)

∂xi1 ···∂xin
is the derivative by n arbitrary arguments.

We now extend the graphical notation in terms of Feynman diagrams to denote
the Taylor coefficients of the potential by interaction vertices

ε
V

(n)
i1···in
n!

n∏
k=1

xik =:
i1 in

�

i2 . . .

. (4.7)

The corrections ZV (0) require, to first order in ε, the calculation of the moments

〈xi1 · · · xin〉0. (4.8)

So with Wick’s theorem the first order correction terms are

ε

∞∑
n=0

N∑
i1,...,in=1

1

n! V
(n)
i1···in

∑
σ∈P({2,...,2},n)

A−1
σ(1)σ (2) · · · A−1

σ(n−1)σ (n), (4.9)

where σ are all permutations that lead to distinct pairings of the labels i1, . . . , in
and n must be an even number, by Wick’s theorem.
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Continuing the expansion up to second order in ε we insert (4.6) into exp(εV (x))

to get

exp(εV (x)) = exp

⎛
⎝ε

∞∑
n=0

N∑
i1,...,in=1

ε
V

(n)
i1···in
n!

n∏
k=1

xik

⎞
⎠ (4.10)

= 1 + ε

∞∑
n=0

N∑
i1,...,in=1

V
(n)
i1···in
n!

n∏
k=1

xik

+ ε2

2!
∞∑

n,m=0

∑
{ik ,jl }

V
(n)
i1···in
n!

V
(m)
j1···jm

m!
n∏

k=1

xik

m∏
l=1

xjl + . . .

The last line shows that we get a sum over each index ik . We see, analogous to the
factor ε2/2!, that a contribution with k vertices has an overall factor εk/k!. If the k

vertices are all different, we get the same term multiple times due to the sums over
the index tuples i1, . . . in. The additional factor corresponds to the number of ways
to assign the k vertices to k places. So if the k vertices in total are made up of groups
of ri identical vertices each, with k =∑n

i=1 ri , we get another factor k!
r1!···rn! .

We need to compute the expectation value 〈. . .〉0 of the latter expression,
according to (4.5). For a Gaussian solvable part this task boils down to the
application of Wick’s theorem. These expressions soon become unwieldy, but we
can make use of the graphical language introduced above and derive the so-called
Feynman rules to compute the corrections in ZV (0) at order k in ε:

• At order k, which equals the number of interaction vertices, each term comes

with a factor εk

k! .

• If vertices repeat ri times the factor is εk

r1!···rn! .
• A graph representing this correction consists of k interaction vertices (factor

V
(n)
i1···in
n! ); in each such vertex n lines cross.

• We need to consider all possible combinations of k such vertices that are
generated by (4.10).

• The legs of the interaction vertices are joined in all possible ways into pairs; this
is because we take the expectation value with regard to the Gaussian in (4.5)
(due to the permutations

∑
σ∈P [{2,...,2}](q)); every pair of joined legs is denoted

by a connecting line from xi to xj , which end on the corresponding legs of the
interaction vertices; each such connection yields a factor A−1

ij .
• We get a sum over each index ik .

We will exemplify these rules in the following example on a toy model.
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4.3 Example: Example: “φ3 + φ4” Theory

As an example let us study the system described by the action

S(x) = S0(x) + ε V (x) (4.11)

V (x) = α

3!x
3 + β

4!x
4

S0(x) = −1

2
Kx2 + 1

2
ln

K

2π
,

with K > 0. We note that the action is already in the form to extract the Taylor
coefficients V (3) = α and V (4) = β. Here the solvable part of the theory, S0, is a
one-dimensional Gaussian. The constant term 1

2 ln K
2π

is the normalization, which
we could drop as well, since we will ultimately calculate the ratio (4.4), where this
factor drops out. With this normalization, a contraction therefore corresponds to the
Gaussian integral

x
�

x
= 〈xx〉0

=
√

K

2π

∫
x2 exp

(
−1

2
Kx2

)
dx

= 〈〈x2〉〉0 = K−1,

the variance of the unperturbed distribution, following from the general form (3.5)
for the second cumulants of a Gaussian distribution for the one-dimensional case
considered here. Alternatively, integration by parts yields the same result.

The first-order correction to the denominator Z(0) is therefore

ZV,1(0) = α

3!x
3 + β

4!x
4

0

= α

3! x3
0 + β

4! x4
0

= 0 + 3 ·

= 0 + β

4! 3K−2,

where the first term ∝ x3 vanishes, because the Gaussian is centered (has zero
mean). We here use the notation of the interaction vertex ���as implying the
prefactor ε, as defined in (4.7) and the factor β

4! , which is the Taylor coefficient
of the potential. We have two connecting lines, hence the factor (K−1)2. The factor
3 appearing in the third line can be seen in two ways: (1) By the combinations to
contract the four lines of the vertex: We choose one of the four legs arbitrarily;
we then have three choices (factor 3) to connect this leg to one of the three
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remaining ones; the remaining two legs can be combined in a single manner then
(factor 1). Choosing any other of the four legs to begin with leads to the same
combinations, so there is no additional factor 4 (would double-count combinations).
(2) By noting that we essentially compute the fourth moment of a Gaussian. We
will see in Sect. 4.8 that for a unit-variance Gaussian we get the general result
〈xn〉0 = n!! := n(n − 2) · · · 1. So here the result is 〈x4〉0 = 3!! = 3 · 1 = 3,
in line with the combinatorial factor computed diagrammatically.

At second order we get

ZV,2(0) =
2

2!
α

3!x
3 α

3!x
3
0 + 2!

1!1!
2

2!
α

3!x
3 β

4!x
4
0

=0

+
2

2!
β

4!x
4 β

4!x
4
0

= 3 · 2 · + 3 · 3 ·

+ 4 · 3 · 2 · + 4
2

2 · 2 · + 3 · · 3 ·

=
2

2!
α

3!
2
K−3 (3 · 2 + 3 · 3)

=15=(6−1)!!

+
2

2!
β

4!
2
K−4 (4 · 3 · 2 + 4

2
2 · 2 + 3 · 3)

=105=(8−1)!!

.

We dropped from the first to the second line the term with an uneven power in x,
because we have a centered Gaussian. The combinatorial factors, such as 3 · 2 for
the first diagram, correspond to the number of combinations by which the legs of
the two vertices can be contracted in the given topology. The factor 2!

1!1! is due to
the number of ways in which the sum in (4.10) produces the same term. Again,
the expressions in the underbraces show that alternatively, we can obtain the results
from the expression of the k-th moment of a Gaussian with variance K−1, which is

(k − 1)!! K− k
2 .

4.4 External Sources

Now let us extend this reasoning to Z(j), which is a function of j . Analogously as
for the potential, we may expand the source term jTx into its Taylor series

exp
(
jTx

) = exp

(
N∑

l=1

jlxl

)

=
∞∑

m=0

1

m!
N∑

l1···lm=1

m∏
k=1

jlkxlk. (4.12)
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So for Z(j), instead of Eq. (4.8), we need to evaluate the moments

〈 xi1 · · · xin︸ ︷︷ ︸
n single factors x

xl1 · · · xlm︸ ︷︷ ︸
m factors x

〉0. (4.13)

So in addition to the n single factors x from the interaction vertices, we get m

additional factors due to the source terms jlxl . By Wick’s theorem, we need to pair
all these xi in all possible ways into pairs (expressed by sum over all distinct pairings
σ ∈ P({2, . . . , 2}, n+m), so the generalization of Eq. (4.9) at first order in ε (higher
orders in ε are analogous to Eq. (4.10)) reads

∞∑
n,m=0

1

m!
N∑

i1,··· ,in,
l1,··· ,lm=1

ε
V

(n)
i1···in
n!

∑
σ∈P({2,··· ,2},n+m)

A−1
σ(1)σ (2) ··· A−1

σ(n+m−1)σ (n+m).

(4.14)

So the additional graphical rules are:

• In a way, the source term jixi act like a monopole interaction vertex; these terms
are represented by a line ending in an external leg to which we assign the name
ji :

ji

�

• We need to construct all graphs including those where lines end on an arbitrary
number of external points ji .

• A graph with l external lines contributes to the l-th moment, because after
differentiating Z(j) l-times and setting j = 0 in the end, this is the only
remaining term.

• For a graph with l external lines, we have an additional factor 1
l! in much the

same way as interaction vertices. By Wick’s theorem and Eq. (4.9), we need
to treat each of these li factors ji as distinct external legs to arrive at the right
combinatorial factor. Each external leg ji comes with a sum

∑N
i=1.

These rules are summarized in Table 4.1. We will exemplify these rules in the
example in Sect. 4.7, but first reconsider the normalization factor appearing in
Eq. (4.4) in the following section.

4.5 Cancelation of VacuumDiagrams

To arrive at an expression for the perturbation expansion (5.2) of the normalized
moment-generating function Z(j) (4.1), whose derivatives yield all moments, we
need to divide by Z(0), the partition function at source value j = 0. By the
rules derived in the previous section, we see that the diagrams contributing to Z(0)
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Table 4.1 Diagrammatic rules for the perturbative expansion of ZV (j)

Meaning Algebraic term Graphical representation

Perturbation order k εk

k! Number of interaction vertices

Each internal index is summed over
∑N

ik=1

Interaction vertex with n legs ε
V

(n)
i1 ···in
n!

i1 in

i2 ...

Internal line
A−1

ik

xi xk

contraction of two internal xi , xk

External line ∑
k A−1

ik jk

xi jk

contraction of arbitrary xi and external xk

are the so-called vacuum diagrams: Diagrams without external lines. An example
appearing at first order in ε in a theory with a four point interaction vertex is:

But applying the same set of rules to the calculation of Z(j), we see that the
expansion also generates exactly the same vacuum diagrams. This can be seen from
Eq. (4.14): At given order k, among the pairings σ there are in particular those that
decompose into two disjoint sets, such that all external lines are contracted with
only a subset of k′ interaction vertices. We could formally write these as

∑
σ∈P({2,...,2},q)×P({2,...,2},r)

=
∑

σa∈P({2,...,2},q)

∑
σb∈P({2,...,2},r)

. (4.15)

The remaining k − k′ vertices are contracted only among one another, without any
connection to the first cluster. An example at first order and with two external lines
is:

×
ji jk

.

Let us now fix the latter part of the diagram, namely those vertices that are
connected to external legs and let us assume it is composed of k′ vertices. We want
to investigate, to all orders in k, by which vacuum diagrams such a contribution is
multiplied. At order k = k′ there cannot be any additional vertices in the left vacuum
part; we get our diagram times 1 at this order; the factor 1 stems from (4.10). At
order k = k′ + 1, we get a multiplication with all vacuum diagrams that have
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a single vertex. At order k = k′ + k′′, we hence get a multiplicative factor of
all vacuum diagrams with k′′ vertices. So we see that our particular contribution
is multiplied with all possible vacuum diagrams. To see that they exactly cancel
with those from the denominator Z(0), we are left to check that they arise with
the same combinatorial factor in both terms. The number of permutations in (4.15)
is obviously the same as those in the computation of the vacuum part in the
denominator, as explained in Sect. 4.2

Z(j)

Z(0)
=

1 + + . . . ×
ji jk

+ . . .

1 + + . . .

.

Also the powers εk′ · εk′′ = εk obviously add up to the right number. We still need
to check the factor that takes care of multiple occurrences of vertices. In total we
have k vertices. Let us assume a single type of vertex for simplicity. We have k such
vertices in total (in the left and in the right part together). If k′ ≤ k of these appear

in the right part of the diagram, we have
( k

k′
) = k!

(k−k′)! k′! ways of choosing this

subset from all of them. Each of these choices will appear and will yield the same
algebraic expression. So we get a combinatorial factor

1

k!
k!

(k − k′)!k′! = 1

(k − k′)! · 1

k′! .

The first factor on the right-hand side is just the factor that appears in the
corresponding vacuum diagram in the denominator. The second factor is the one
that appears in the part that is connected to the external lines.

We therefore conclude that each diagram with external legs is multiplied by all
vacuum diagrams with precisely the same combinatorial factors as they appear in
the normalization Z(0). So all vacuum diagrams are canceled and what remains in
ZV are only diagrams that are connected to external lines:

Z(j) = Z(j)

Z(0)
= Z0(j) + ZV (j)

ZV (j) =
∑

graphs(� = A−1, εV ) with external legs ending on j

Z
(l1,...,lN )
V (j)

∣∣∣
j=0

= 〈xl1 · · · xlN
〉

=
∑

graphs(� = A−1, εV )

with l1 + . . . + lN external legs replaced by j
li
i → li ! ,
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where the rules summarized in Table 4.1 above apply to translate diagrams into their
algebraic counterpart and the latter term li ! arises from the li derivatives acting on
the external source ji coming in the given power li .

4.6 Equivalence of Graphical Rules for n-Point Correlation and
n-th Moment

We here want to see that the graphical rules for computing the n-th moment of
a single variable 〈xn〉 are the same as those for the n-point correlation function
〈x1 · · · xn〉 with n different variables. To see this, we express the moment-generating
function for the single variable Z(j) as Z(j1, . . . , jn) = ∫

dx p(x) ex
∑

i ji so that
the n-th moment can alternatively be expressed as

∂j1 · · · ∂jnZ(j1, . . . , jn)
∣∣
ji=0 = 〈xn〉

= ∂n
j Z(j)

∣∣
j=0.

This definition formally has n different sources, all coupling to the same x. The
combinatorial factors constructed by the diagrams are the same as those obtained by
the n-fold derivative: We have n(n − 1) · · · 1 = n! ways of assigning the n different
ji to the external legs, all of which in this case yield the same result.

4.7 Example: “φ3 + φ4” Theory

As an example let us study the system described by the action (4.11). At zeroth
order, the moment-generating function (3.3) therefore is

Z0(j) = exp

(
1

2
K−1j2

)
. (4.16)

At first order in ε we need all contributions with a single interaction vertex. If it
is the three-point vertex, we only get a contribution that has a single external leg j

that contributes, which corresponds to a so-called tadpole diagram, a diagram with
a single external leg and the two remaining legs connected to a loop

j

= α

3! j x3

q=3

· x

r=1

0

3(K−1)2 (4.17)

= ε
α

3! 3
(
K−1)2 j = ε

α

2

(
K−1)2 j. (4.18)



32 4 Perturbation Expansion

We may obtain the value of this contribution in two ways:

1. In the first way, corresponding to (4.17), we directly use the expansions
coefficients of (4.6) at the desired order in ε, here ε1, and the coefficients
of (4.12) at the desired order, here j1, collect all factors x of the product (here x4)
and obtain their value under the Gaussian distribution by Wick’s theorem (3.6),
corresponding to a direct evaluation of (4.14). So we here get 〈x4〉0 = 3(K−1)2,
because there are 3 distinct pairings of the first x with the three remaining ones
and then only one combination is left and we have one propagator line.

2. Alternatively, corresponding to (4.18), we may use the graphical rules derived in

the previous section to get the same result: We have a factor ε1

1! , because we are
at first order (one interaction vertex). The three-point vertex comes with a factor
α
3! . There is one external leg, so j

1! . The combinatorial factor 3 arises from the
three choices of attaching the external source j to one of the three legs of the
three-point vertex. The remaining two legs of the three-point vertex can then be
contracted in only a single way.

Because the diagram has a single leg it contributes to the first moment. We see that
the four point vertex does not contribute to the mean at this order, because it would
give a contribution ∝ 〈x5〉0 = 0, which vanishes by Wick’s theorem.

Calculating corrections to the mean at second order in ε, we get four different
non-vanishing contributions with one external leg. One of them is

j

=
2

1!1!
α

3!
β

4! 3 · 4 · 3 · j K−4 = 2 αβ

4
K−4 j.

The combinatorial factor arises as follows: The external leg j is connected to
the three-point vertex (3 possibilities). The remaining two legs of the three-point
vertex need to be connected to two of the legs of the four point vertex. We may
choose one of the legs of the three-point vertex arbitrarily and connect it to one
of the four legs of the four point vertex (4 possibilities). The other leg then has 3
possibilities left. Had we chosen the other leg of the three-point vertex, we would
have gotten the same combinations, so no additional factor two. Since we have two

different interaction vertices, we get a factor ε2

1!1! form the exponential function of
the interaction potential V .

Diagrams with two external legs that contribute to the second moment are

j
�

j
= j2

2! K
−1, (4.19)

where the combinatorial factor is one, because there is a unique way to contract
the pair of factors x attached to each j . This can also be seen from the explicit

calculation as in point 1. above, as ε0

0!
j2

2! 〈x2〉0 = j2

2 K−1. The only contribution
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with one interaction vertex is

j

j
= 4 · 3 · β

4! K−3 j2

2! = β

4
K−3 j2.

(4.20)

At moments higher than one, having two or more external legs, we may also get
unconnected contributions that factorize. For example, a second order contribution
to the second moment is

j

×
j

= 2 · 3 · 3 ·
2

2

α

3!
2
K−4 j2

2! ,

= α

2

2
K−4 j2

2! (4.21)

being one-half the square of (4.18) (Combinatorial factor: Two vertices to choose
to attach the first leg times three legs to choose from and three legs to choose for
attaching the other external leg). We recognize that this term is a contribution to
the second moment stemming from the product of two contributions from the first
moment. If we calculate the variance, the second cumulant, we know that exactly
these terms will be subtracted. In a way, they do not carry any new information. We
will see in the next section how these redundant terms are removed in the graphical
language.

4.8 Problems

(a) Moments of a Gaussian

Show that the moments of a mean-zero Gaussian distribution with second cumulant
σ 2 are given by 〈xn〉 = σn(n − 1)!! if n even and 0 else. Here n!! = n(n − 2)(n −
4) · · · 1 for n odd and 0 else. First, show this relation by direct integration of the
definition. This can, for example, be done by deriving a recursive expression for the
moments by integration by parts and then using induction (2 points). Second, do the
same calculation by the application of Wick’s theorem (2 points).

(b) Asymptotic Perturbation Expansion

The perturbation expansion around a Gaussian is an asymptotic expansion of a non-
converging series. We will illustrate this point here on a simple, analytically solvable
example, following [2, p. 53ff]. Exceedingly high accuracy can be obtained at finite
order, given the perturbation parameter is sufficiently small, as shown in Fig. 4.1c.
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Fig. 4.1 Illustration of the asymptotic properties of the perturbation expansion. (a) Action
S(x) = − 1

2x2 + ε
4 x4. (b) Probability distribution p(x) ∝ exp(S(x)). (c) Relative error

|Zk
ε (0) − Zε(0)|/Zε(0) of the k-th order approximation Zk

ε + O(εk+1). Different gray levels
correspond to values of ε ∈ [−0.01,−0.02,−0.05,−0.1] from dark to light. (d) Variance of the
distributions (numerical result: dashed) and approximations of orders 1, 2, 5, and 10 (from dark to
light)

Consider the action S(x) = − 1
2x2 + ε

4x4, as shown in Fig. 4.1a for different
values of ε < 0. Let us treat S0 = − 1

2x2 as the solvable, here Gaussian, part
and ε V (x) = ε

4x4 as the perturbation. Using Eq. (4.4) and the previous exercise,
determine the expansion in ε for the normalization

Zε(0) =
〈
exp
(ε

4
x4
)〉

0
= 1√

2π

∫
e− 1

2 x2
e

ε
4 x4

dx (4.22)

for arbitrary order k in εk (2 points).
Compare your expression for orders k = 1 and k = 2 with the result obtained

in terms of Feynman diagrams (2 points). Use the diagrammatic notation in which

ε
4x4 corresponds to one vertex .

Additional Explanation The implementation compares the perturbative result to
the numerical solution of the integral (4.22). Observe the error as a function of the
order k of the approximation. We see that the error may become very small (∼10−20)
at finite order of the perturbation expansion for sufficiently small parameters ε,
as shown in Fig. 4.1c. Beyond a certain minimum, the error increases again. For
this reason, a low order approximation may be favorable over an approximation of
higher order, as shown in Fig. 4.1d for the variance of the distribution.
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(c) Gaussian Integrals and Linear Equations

We want to see here that solving Gaussian integrals is equivalent to solving a set
of linear equations. This is the reason why Green’s functions in field theory (which
are in some sense the inverses of a linear differential operator, their fundamental
solutions) can be expressed as Gaussian integrals.

To this end consider a matrix K ∈ R
N×N (not necessarily symmetric) and two

sets of variables x ∈ R
N and x̃ ∈ R

N . We define a partition function as

Z(j, j̃) :=
∫

dx

∫
dx̃ exp

(
− x̃T K x + jTx + j̃Tx̃

)
.

First rewrite the exponent as a bi-linear form in the new variables y = (x, x̃) and
the new sources l = (j, j̃ ) with respect to the scalar product

yT
1 y2 := (xT

1 , x̃T
1

) (x2

x̃2

)
= xT

1 x2 + x̃T
1 x̃2. (4.23)

Show that the bi-linear form is self-adjoint with respect to this scalar product (2
points). Assuming further that the resulting form is positive definite, use the result
Eq. (3.3) for the Gaussian to obtain an explicit form for Z(j, j̃ ) (up to an arbitrary
multiplicative constant). Now consider a set of linear equations

K x = b.

Show that its solution can be expressed with help of Z(j, j̃ ) = Z(j, j̃ )/Z(0, 0) as

xi =
∑

k

∂2Z

∂ji∂j̃k

∣∣∣
j=j̃=0

bk, (4.24)

(2 points). If K had been a linear differential operator, ∂2Z

∂ji∂j̃k
would be the

corresponding Green’s function (fundamental solution K ∂2Z

∂j∂j̃

∣∣∣
j=j̃=0

= 1). For this

reason, Z is also called generating function[al] of the Green’s functions.

(d) Pairwise Maximum Entropy Model

We here want to study an example of a perturbation expansion around a non-
Gaussian distribution, to show that the perturbation expansion is a general method.
Suppose we record the activity of N neurons. A neuron at each time point may be
either active, ni = 1, or inactive, ni = 0. We hence have a vector of activities
ni ∈ {0, 1}, i = 1, . . . , N at each time point. We would like to have a model of this
activity that contains pairwise correlations between units. So we construct a joint
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distribution of activities with the action

S(n) = ε

2
nTKn + jTn (4.25)

= ε

2

∑
k 
=l

nkKklnl +
∑

k

jknk,

where K is a symmetric N by N matrix with nonzero entries only on the off-
diagonal, i.e. Kii = 0. The parameters j can be used to control the mean value
of the activities, the parameters Kij for i 
= j control the correlations between pairs
of neurons. One can show that the distribution maximizes the Shannon entropy and
see that j and K are Lagrange multipliers which formulate constraints on these
moments [3]. Note also that the model is isomorphic to an N dimensional system of
Ising spins.

We here want to derive approximate expressions for the first and second
cumulants of the activities in dependence of j and K . The resulting theory to be
derived is shown in comparison to the numerical solution in Fig. 4.2. The numerical
solution requires the summation over 2Nstates in the partition function and is hence
only available for small N .
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Fig. 4.2 Perturbation approximation of a pairwise maximum entropy model with action (4.25)
and N = 12 units. Biases drawn randomly j ∼ N(−3, 0.52). Couplings drawn randomly
Ki 
=j ∼ ε N(0, 1). (a) Scatter plot of mean activities 〈ni 〉 of first-order approximation ∝ ε over true
value obtained from summing the partition function. Different gray levels from black to light gray
correspond to couplings between ε = 10−5 to ε = 10−0.5. (b) Scatter plot of cross covariances
ckl = 〈nknl〉 − 〈nk〉〈nl〉 for k 
= l of first-order approximation in ε over true value. Same gray
code as in (a). (c) Root mean square error of mean values. (d) Root mean square error of cross
covariances
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To derive the approximation, we treat S0(n) = jTn as the solvable part of the
theory and εV (n) = ε

2nTKn as the perturbation. Also observe that the solvable
part, the distribution exp(jTn), is not a Gaussian.

First calculate the partition function of the solvable system

Z0(j) =
∑

n∈{0,1}N
exp

(
jTn

)
.

We will keep the source term j 
= 0 here, because it plays a double role. It is
the source with respect to which we differentiate Z0(j) to obtain moments. But it
is also a parameter of the system.

Then show that an arbitrary moment of this distribution may be obtained as

〈n1n2 · · · nk〉0(j) := Z−1
0 (j)

∑
n∈{0,1}N

n1n2 · · · nk exp
(
jTn

)
(4.26)

≡ ∂1∂2 · · · ∂k Z0(j)

Z0(j)

to be shown=
k∏

l=1

ml(jl)

with ml(jl) ≡ ∂l ln Z0(j)
to be shown= 1

1 + e−jl
∈ [0, 1];

(2 points).
Further, show that the second and third cumulant of the solvable system are given

by

∂lm(jl) = ml(jl) − m2
l (jl) (4.27)

∂2
l m(jl) = ml − 3 m2

l + 2m3
l ,

which we will use later (2 points).
We now want to obtain corrections to the partition function from the interaction

term exp( ε
2nTKn). To this end, determine the correction of first order in ε to

Z(j)/Z0(j) = Z−1
0 (j)

∑
n∈{0,1}N

exp
(ε

2
nTKn + jTn

)
. (4.28)

Using (4.26), write your result in terms of the mean activities ml(jl); (2 points).
Determine the cumulant-generating function as W(j) = lnZ(j). If we are

interested in the cumulants, why may we neglect that Z(0) 
= 1, i.e. that Z is
not normalized as opposed to Z(j)/Z(0)?

Show that the result is

W(j) = lnZ0(j) + ε
1

2
m(j)T K m(j) + O(ε2); (4.29)

(2 points).
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Using W , determine the expressions for the mean 〈nk〉, which is the first
cumulant, and the covariance ckl := 〈nknl〉 − 〈nk〉〈nl〉, which is the second
cumulant. Here you may make use of (4.27); (2 points).

Figure 4.2 on page 36 can be reproduced with the code in the repository. It
compares this approximation to the solution obtained by directly summing the
partition function. Panel a shows that the mean activities are scattered mainly due to
the random choice of biases j . The cross covariance in panel b vanishes for ε → 0.
Therefore, the points are centered around 0 for small ε and the spread of the cloud
increases with ε, in line with the leading order prediction. The root mean square
errors confirm the high precision of O(ε2) for both quantities: Both errors increase
with a slope 2 in the double logarithmic plot, corresponding to the first neglected
term ∝ ε2, as shown in Fig. 4.2c, d.

(e) Diagrams of the “φ3 + φ4-Theory”

Calculate all remaining diagrams at second order in ε2 that contribute to the first
moment. Are there contributions with two three-point vertices? (2 points).

Check your result by performing the calculation in both ways: Diagrammatically
and by the direct evaluation of Eq. (4.14), as explained in the lecture on the example
of Eq. (4.17) and using the result of exercise a) above. (2 points).

Obtain all corrections to the second moment up to second order in ε. Then
calculate the variance of the distribution and observe which diagrams cancel. Which
topological feature distinguishes the canceled diagrams from those that remain? (2
points).

(f) Bias of the Variance Estimator

For i = 1, . . . , N , let xi be independent and distributed according to some law
p(x) with mean μ and variance σ 2. Show that the empirical variance defined as
VN = 1

N

∑N
i=1 (xi − SN)2 with empirical average SN = 1

N

∑N
i=1 xi yields a

biased estimator of the variance σ 2, i.e. that 〈VN 〉 
= σ 2 for finite N . What would be
an unbiased definition of the empirical variance? Specify the correction term, also
known as Bessel’s correction. Is the empirical average SN a biased estimator of the
mean μ?

References

1. J.J. Binney, N.J. Dowrick, A.J. Fisher, M. Newman, The Theory of Critical Phenomena: An
Introduction to the Renormalization Group (Oxford University Press, New York, 1992). ISBN
0198513933, 9780198513933

2. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Perseus Books, New York, 1998)
3. E.T. Jaynes, Phys. Rev. 106, 620 (1957)



5Linked Cluster Theorem

Abstract

This chapter introduces and proves the linked cluster theorem, which states that
the perturbative corrections to the n-th cumulant are determined by all connected
Feynman diagrams with n external legs. In constructing the proof, we also
extend the diagrammatic notation to cases in which the solvable theory contains
cumulants of arbitrary order.

5.1 Introduction

The relations of the different generating functions, the action, the moments, and
cumulants up to this point can be summarized as follows:
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We saw in the last section (in Sect. 4.5) that the topology of certain graphs
allowed us to exclude them from the expansion of Z: the absence of external lines
in the vacuum graphs lead to their cancelation by the normalization. In the coming
section we will derive a diagrammatic expansion of W and the cumulants and will
investigate the topological features of the contributing graphs. Stated differently, we
want to find direct links from the action S to the cumulant-generating function W

and to the cumulants.
In the preceding example, in Eq. (4.21), we noticed that we obtained a diagram

combined of two unconnected diagrams, the first part of which already appeared at
the lower order ε. It would be more efficient to only calculate each diagram exactly
once.

We have already faced a similar problem in Sect. 2.3, when we determined
the moment-generating function of a factorizing density, a density of independent
variables. The idea there was to obtain the Taylor expansion of ln Z instead of
Z, because the logarithm converts a product into a sum. A Taylor expansion can
therefore only contain mixed terms in different ji and jk if these are part of the
same connected component, also called a linked cluster. We will explore the same
idea here to see how this result comes out more formally.

5.2 General Proof of the Linked Cluster Theorem

The linked cluster theorem that we will derive here is fundamental to organize the
perturbative treatment, because it drastically reduces the number of diagrams that
need to be computed.

To proceed, we again assume we want to obtain a perturbation expansion of
W(j) = ln Z(j) around a theory W0(j) = ln Z0(j). We here follow loosely the
derivation of Zinn-Justin [1, p. 120ff].

We consider here the general (not necessarily Gaussian) case, where we know
all cumulants of Z0, we may expand the exponential function in its Taylor series
and employ equation (2.15) to determine all appearing moments of x as products of
cumulants. Using our result, Eq. (2.7), from Sect. 2.1, we see that instead of writing
the moments 〈x1 · · · xk〉0 as expectation values with respect to Z0, we may as well
write them as derivatives of the moment-generating function: Each term · · · xi · · ·
will hence be replaced by · · · ∂i · · · , so that in total we may write equation (4.3) as

Z(j) =
∫

dx exp(εV ( x︸︷︷︸
→∂j

)) exp
(
S0(x) + jTx

)
(5.1)

= exp(εV (∂j ))

∫
dx exp

(
S0(x) + jTx

)
︸ ︷︷ ︸

=Z0(j)

= exp(εV (∂j ))Z0(j)

= exp(εV (∂j )) exp(W0(j))Z0(0),
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where ∂j = (∂j1 , . . . , ∂jn)
T is the nabla operator, a vector containing the derivative

by jk, denoted as ∂k , in the k-th entry. The expression exp(εV (∂j )) is defined by the
Taylor expansion of the exponential function.

The following proof of connectedness of all contributions, unlike the results
presented in Sect. 4.2, does not rely on Z0 being Gaussian. We here start from
the general expression (5.1) to derive an expansion of W(j), using the definition
equation (2.8) to write

exp(W(j)) = Z(j) = Z(j)

Z(0)
(5.2)

= exp
(
εV (∂j )

)
exp (W0(j))

Z0(0)

Z(0)

WV (j) := W(j) − W0(j)

= ln
(

exp (−W0(j)) exp
(
εV (∂j )

)
exp (W0(j))

)
+ ln

Z0(0)

Z(0)︸ ︷︷ ︸
const.

,

where in the second step we multiplied by exp(−W0(j)) and then took the ln. The
latter term ln Z0(0)

Z(0)
is just a constant making sure that W(0) = 0. Since we are

ultimately interested in the derivatives of W , namely the cumulants, we may drop
the constant and ensuring W(0) = 0 by dropping the zeroth order Taylor coefficient
in the final result. The last expression shows that we obtain the full cumulant-
generating function as W0 plus an additive correction WV , which depends on the
interaction potential V . The aim is to derive diagrammatic rules to compute WV .

The idea is now to prove connectedness of all contributions by induction,
dissecting the operator exp

(
εV (∂j )

)
into infinitesimal operators of slices 1

L
as

exp
(
εV (∂j )

) = lim
L→∞

(
1 + ε

L
V (∂j )

)L

. (5.3)

Each operator of the form 1 + ε
L

V (∂j ) only causes an infinitesimal perturbation
provided that ε

L
� 1. We formally keep the ε-dependence here for later comparison

with the results obtained in Sect. 4.2.
We start the induction by noting that at order ε0 we have WV = 0, so it contains

no diagrams. In particular, there are no disconnected components.
To make the induction step, we assume that, for large L given and fixed, the

assumption is true until some 0 ≤ l ≤ L, which is that Wl(j) is composed of only
connected components, where

exp (Wl(j)) :=
(

1 + ε

L
V (∂j )

)l

exp (W0(j)) . (5.4)
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We then get

W = lim
L→∞ WL + ln

Z0(0)

Z(0)
.

Hence we need to show that

exp(Wl+1(j)) =
(

1 + ε

L
V (∂j )

)
exp(Wl(j))

is still composed only out of connected components. To this end we again multiply
by exp (−Wl(j)), take the logarithm and expand ln(1 + ε

L
x) = ε

L
x + O(( ε

L
)2) to

get

Wl+1(j) − Wl(j) = ε

L

(
exp (−Wl(j)) V (∂j ) exp (Wl(j))

)+ O
(( ε

L

)2)
.

(5.5)

Expanding the potential into its Taylor representation (4.6), we need to treat
individual terms of the form

V
(n)
i1···in
n! exp (−Wl(j)) ∂i1 · · · ∂in exp (Wl(j)) . (5.6)

Since the differential operator is multiplied by the respective Taylor coefficient
V (n)

n! from (4.6), and noting that the two exponential factors cancel each other after
application of the differential operator to the latter one, what remains is a set of

connected components of Wl(j) tied together by the vertex V (n)

n! . The definition of
Wl by Eq. (5.4) shows that the dependence on j originally stems from W0(j) being
a function of j . The application of the differential operator thus generates all kinds
of derivatives of W0. We see that disconnected components cannot appear, because
in each iteration step of the form (5.6) there is only a single interaction vertex. Each
leg of such a vertex corresponds to the appearance of one ∂ik , which, by acting on
Wl(j) attaches to one such component.

As an example, consider a one-dimensional theory with the interaction εV (x) =
ε x4

4! . We use the symbol with superscript l(j) to denote Wl(j) as a function of j

and the number of legs n as the number of derivatives taken

W
(n)
l (j) =:

1

n

2

...l(j)
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In this notation, a single step produces the new diagrams

Wl+1(j) − Wl(j)

= exp(−Wl(j))
∂j

∂j

∂j

∂j
exp(Wl(j))

(5.7)

+
l(j)

+ 4 ·
l(j) l(j)

+ 4

2
·
l(j)

l(j)

l(j)

exp(Wl(j)).

= exp(−Wl(j))
l(j)

l(j)

l(j)

l(j) + 4

2
·
l(j) l(j)

(5.8)

By construction, because every differential operator is attached to one leg
of the interaction vertex, we do not produce any unconnected components. The
combinatorial factors are the same as usual but can also be derived from the rules of
differentiation: For the first term, each of the four differential operators needs to act

on Wl(j), so a factor 1; for the second term: There are

(
4
2

)
ways of choosing two

of the four derivatives that should act on the same Wl and two which remain to act
on a new Wl from the exponential function. The other factors follow by analogous
arguments. We see that only sums of connected components are produced, proving
the assumption of connectedness by induction.

What remains to be shown is that the connected diagrams produced by the
iterative application of Eq. (5.5) come with the same factor as those that are
produced by the direct perturbation expansion in Sect. 4.2, for the example of a
Gaussian theory as the underlying exactly solvable model. We therefore rewrite the
recursion step as

Wl+1(j) = 1 · Wl(j) + ε

L
·

∞∑
n=1

N∑
i1···in=1

V (n)

n! exp (−Wl(j)) ∂i1 · · · ∂in exp (Wl(j)) .

(5.9)
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Here we can omit the constant term of V , so starting at n = 1, because the constant
may be absorbed into the normalization constant. The latter expression shows that
each step adds to Wl(j) the set of diagrams from the term (5.6) on the right hand
side to obtain Wl+1(j). The additional diagrams, as argued above, combine the
connected elements already contained in Wl with vertices from Eq. (4.6).

We now want to show that we only need to include those new diagrams that
add exactly one vertex to each diagram already contained in Wl and that we do not
need to consider situations where the additional vertex ties together two components
that each have one or more interaction vertices. Stated differently, only one leg
of the interaction vertex shown in (5.8) must attach to a component in Wl , while
all remaining legs must be attached to W0. To understand why this is, we need
to consider the overall factor in front of a resulting diagram with k interaction
vertices after L iterations of (5.9). Each step of (5.9), by the first term, copies all
diagrams as they are and, by the second term, adds those formed by help of an
additional interaction vertex. Following the modification of one component through
the iteration, in each step we hence have the binary choice to either leave it as it is
or to combine it with other components by help of an additional vertex.

We first consider the case that each of the k vertices is picked up in a different
step (at different l) in the iteration. To formalize this idea, we need to distinguish
the terms in Wl

Wl(j) = W0(j) + WV,l(j) = +
0(j) V ; l(j)

into those of the solvable theory W0, which are independent of ε, and the
corrections in WV,l that each contain at least one interaction vertex and hence at
least one factor of ε. For the example shown in (5.8), this means that we need to
insert W0 + WV,l at each “leave,” multiply out and only keep those graphs that
contain at most one contribution from WV,l ; all other contributions would add a
diagram with more than one additional vertex and we would hence need less than k

steps to arrive at a diagram of order k.

Each such step comes with a factor ε
L

and there are

(
L

k

)
ways to select k steps

out of the L in which the second term rather than the first term of (5.9) acted on the
component in question. So in total we get a factor

( ε

L

)k
(

L

k

)
= εk

k!
L(L − 1) · · · (L − k + 1)

Lk

L→∞→ εk

k! , (5.10)

which is independent of L.
Now consider the case that we pick up the k vertices along the iteration (5.9)

such that in one step we combined two sub-components with each one or more
vertices; a diagram where the vertex combines two or more components from WV,l .
Consequently, to arrive at k vertices in the end, we only need k′ < k iteration steps
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in which the latter rather than the first term of (5.9) acted on the component. The
overall factor therefore is

( ε

L

)k
(

L

k′
)

= εk

k′!
L(L − 1) · · · (L − k′ + 1)

Lk

L�k′= εk

k′!
1

Lk−k′
L→∞= 0. (5.11)

In the limit that we are interested in we can hence neglect the latter option and
conclude that we only need to consider in each step the addition of a single vertex
to any previously existing component. The very same argument shows why the
neglected terms of O( ε

L
)2 that we dropped when expanding ln(1 + ε

L
) do not

contribute to the final result in the limit L → ∞: Such terms would increase the
order of the term in a single iteration step by two or more—consequently we would
need k′ < k steps to arrive at an order k contribution—the combinatorial factor
would hence be ∝ Lk−k′

, as shown above, so these terms do not contribute.
We see that after L steps all possible diagrams are produced, starting from

those with k = 0 interaction vertices and ending with those that have k = L

interaction vertices and the overall factor for each diagram is as in the perturbation
expansion derived in Sect. 4.2: the connected diagrams come with the same factor
as in ZV . The factor (5.10) also obviously follows from the series representation of
the exponential function in Eq. (5.3). All other constituents of the diagram are, by
construction, identical as well.

So to summarize, we have found the simple rule to calculate W(j):

W(j) = ln Z(j) (5.12)

= W0(j) +
∑

connected diagrams

∈ ZV (j),

where the same rules of construction apply for ZV that are outlined in Sect. 4.2.

5.3 External Sources—Two Complimentary Views

There are two different ways how one may interpret the iterative construction (5.9):
We may either consider the Wl(j) appearing on the right-hand side as a function of
j , or we may expand this function in powers of j . In the graphical representation
above (5.8), we used the former view.

In the following, instead, we want to follow the latter view, exhibiting explicitly
the j -dependence on the external legs. The two representations are, of course,
equivalent.

Each element

W
(1)
l (j ) =

l(j)
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that appears in the first term of (5.8) is a function of j . Note that the diagrams
produced in (5.8) look like vacuum diagrams. We will reconcile this apparent
discrepancy now. Let us for concreteness imagine the first step of the iteration, so
l = 1: Then all cumulants appearing in the last expression belong to the unperturbed
theory, hence the first term of (5.8) takes the form

W1(j) =
0(j)

0(j)

0(j)

0(j) + . . .

(5.13)

Now imagine we have the unperturbed theory represented in its cumulants and
let us assume that only the first three cumulants are non-vanishing

W0(j) =
3

n=1

1

n!W
(n)
0 (0)jn

=j 0(0)
+ 1

2!
j j0(0)

+ 1

3! j

j j0(0)

(5.14)

where the superscript 0(0) is meant to indicate that the cumulants of the solvable
theory are just numbers that are independent of j and the entire j -dependence of
W0(j) is explicit on the factors j on the legs in (5.14).

We may therefore make the j -dependence in (5.13) explicit by inserting the latter
representation for each W

(1)
0 (j), which we obtain by differentiating (5.14) once

W
(1)
0 (j) =

3

n=1

1

n!W
(n)
0 (0)jn

=
0(0)

+ j0(0)
+ 1

2! j

j0(0)
,

(5.15)

removing one j from each term and using the product rule. The tadpole diagram

0(0)

signifies the mean value of the solvable theory 〈x〉 = W
(1)
0 (0). These diagrams

would of course vanish if W0 was a centered Gaussian.
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Making this replacement for each of the symbols for W
(1)
0 (j) in (5.13) produces

all diagrams, where all possible combinations of the above terms appear on the legs
of the interaction vertex

0(j)

0(j)

0(j)

0(j) =
0(0)

0(0)

0(0)

0(0)

+4 ·
0(0)

0(0)

0(0)

0(0)

j

+ . . . + 4 · 1

2! ·
0(0)

0(0)

0(0)

0(0)

j

j

+ . . . ,

where the factor 4 in the second term comes from the four possible legs of the
interaction vertex to attach the j -dependence and the factor 4 in the third term comes
for the same reason. The 1

2! is the left-over of the factor 1
3! of the third cumulant and

a factor 3 due to the product rule from the application of the ∂j to either of the three
legs of the third cumulant.

This explicit view, having the j -dependence on the external legs, allows us to
understand (5.12) as a rule to construct the cumulants of the theory directly, because
differentiating amounts to the removal of the j on the corresponding leg. We can
therefore directly construct the cumulants from all connected diagrams with a given
number of external legs corresponding to the order of the cumulant

W(l1,...,lN )(j)

∣∣∣
j=0

= 〈〈xl1 · · · xlN 〉〉

= W
(l1,...,lN )
0 (j)

∣∣
j=0

+
∑

connected diagrams

∈ ZV (j)

with l1 + · · · + lN external legs replaced by j
li
i → li !.

We saw a similar example in Sect. 4.7 in the calculation of the expectation value,
derived from diagrams with a single external leg.
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5.4 Example: Connected Diagrams of the “φ3 + φ4” Theory

As an example let us study the system described by the action (4.11). We want
to determine the cumulant-generating function until second order in the vertices.
To lowest order we have with (4.16) W0(j) = 1

2Kj2. To first order, we need to
consider with (5.12) all connected diagrams with one vertex. We get one first-order
correction with one external leg

j

=3 · K−2 α

3! = α

2
K−2 j.

(5.16)

The correction to the second cumulant is

j

j
= 4 · 3 · β

4! K−3 j2

2! = β

4
K−3 j2.

(5.17)

In addition, we of course have the bare interaction vertices connected to external
sources, i.e. a contribution to the third and fourth cumulants

j

jj
= 3 · 2 · 1 · α

3! K−3 j3

3! = α

3! K−3 j3

j j

j j
= β

4! K−4 j4.

These are all corrections at first order.
At second order we have the contributions to the first cumulant

j

= 4 · 3 · 2 ·
2

1!1!
α

3!
β

4! K−4 j

(5.18)

j

= 3 · 4 · 3
2

1!1!
α

3!
β

4! K−4 j

(5.19)
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j
= 4 · 3 · 3 ·

2

1!1!
α

3!
β

4!K
−4 j.

(5.20)

The corrections to the second cumulant are

j j

= 2 · 3 · 3 · 2 ·
2

2!
α

3!
2

K−4 j2

2!
(5.21)

j j

= 2 · 4 · 4 · 3 · 2 ·
2

2!
β

4!
2

K−5 j2

2!
(5.22)

j

j
= 2 · 3 · 2 · 3 ·

2

2!
α

3!
2

K−4 j2

2!
(5.23)

j

j
= 2 · 4 · 3 · 4 · 3 ·

2

2!
β

4!
2

K−5 j2

2! .
(5.24)

j j = 2 · 4 · 4 · 3 · 3 ·
2

2!
β

4!
2

K−5 j2

2! (5.25)

Here the first factor 2 comes from the two identical vertices to choose from to
attach the external legs. We could go on to the third and fourth cumulants, but stop
here. We notice that there are some elements repeating, such as in Eq. (5.23), which
is composed of a bare three-point interaction vertex and Eq. (5.16). Remembering
the proof of the linked cluster theorem, this is what we should expect: Each
order combines the bare interaction vertices with all diagrams that have already
be generated up to this order. In Chap. 11 we will see how we can constrain this
proliferation of diagrams.
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5.5 Problems

(a) Diagrammatic Formulation of the Pairwise Maximum Entropy
Model

We want to treat the action

S(n) = ε

2
nTKn + jTn (5.26)

= ε

2

∑
k 
=l

nkKklnl +
∑

k

jknk,

for ni ∈ {0, 1}, i ∈ 1, . . . , N , diagrammatically. We again treat as the solvable part
the partition function

Z0(j) =
∑

n∈{0,1}N
exp(jTn)

= �N
k=1 (1 + ejk ).

The variable j plays a double role: It is a parameter of the system, which we denote
as h, and it is a source by which we differentiate. We therefore rewrite Z0(j) as

Z0,h(j) = �N
k=1 (1 + ehk+jk ),

so that we can obtain moments as 〈nk〉 =
∂k

∂jk

∣∣
j=0

Z0,h(j)

Z0,h(0)
for arbitrary values of the

parameter h. We introduce the graphical notation

n1
0

n2
0

n3
0

. . .

for the cumulants of the unperturbed system (hence the superscript 0).
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Determine, from previous exercises, the explicit forms of the first three cumulants
as a function of h. Then show that we may write the cumulant-generating function
W0 of a single variable as

W0(j) =j 0
+ 1

2!
j j0

+ 1
3! j

j j0

(5.27)

Now determine the joint cumulant-generating function W0 of all N non-
interacting variables in this graphical notation (3 points).

Next we consider the interaction term and introduce the notation

1

2
k=l

Kklnknl =1

2
k=l

,

where Jkl = Jlk is symmetric. Show that Z(j) is given by

Z(j) = exp
1

2
k=l ∂k ∂l

×

× exp
i

ji
0; i

+ 1

2!
ji ji

0; i

+ 1

3! ji

ji
ji

0; i

(5.28)

(2 points).

(b) Linked Cluster Theorem and Feynman Diagrams for
Non-Gaussian Theory

Does the linked cluster theorem hold, if the unperturbed theory is not a Gaussian (1
point)?

We saw an example of a non-Gaussian theory in exercise a). We now want to
determine the second-order corrections to cij := 〈〈ninj 〉〉 for i 
= j and for the third
cumulants κijk := 〈〈ninjnk〉〉.

By using (2.15), write the expressions for cij in terms of the first two moments.
Analogously, express κijk in terms of the third moment, the covariance cij , and the
first moment mi := 〈ni〉 (2 points).
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Now use the graphical representation from (5.28) to derive the diagrams that
contribute to first order in Jij to the first cumulant, the second cumulant for cij for
i 
= j , and to the third cumulant for i 
= j 
= k 
= i of the perturbed system (2
points).

Reference

1. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996)



6Functional Preliminaries

Abstract

In this chapter we collect some basic rules of functional calculus that will be
needed in the subsequent chapters.

6.1 Functional Derivative

In the following, we assume that f : C �→ R is a functional that maps from the
space of smooth functions C to the real numbers. The derivative of a functional in
the point x is defined as

δf [x]
δx(t)

:= lim
ε→0

1

ε
f [x + ε δ(◦ − t)] − f [x] (6.1)

= d

dε
F (ε)

∣∣∣
ε=0

F(ε) := f [x + ε δ(◦ − t)],

where the second equal sign only holds if the limit exists. Linearity of the definition
of the derivative is obvious. Note that one always differentiates with respect to one
particular point t . The functional derivative by x(t) therefore measures how sensitive
the functional depends on the argument in the point x(t).

6.1.1 Product Rule

Since the functional derivative can be traced back to the ordinary derivative, all
known rules carry over. In particular, the product rule reads
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δ

δx(t)
(f [x]g[x]) = d

dε
F (ε)G(ε)

∣∣∣
ε=0

(6.2)

= F ′(0)G(0) + F(0)G′(0) = δf [x]
δx(t)

g[x] + f [x]δg[x]
δx(t)

.

6.1.2 Chain Rule

With g : C �→ C, the chain rule follows from the n-dimensional chain rule
by discretizing the t-axis in N bins of width h, applying the chain rule in
R

N , and then taking the limit of the infinitesimal discretization. In the follow-
ing, we consider the functional f [g[x]] = f [y]|y=g[x] in its discretized form,
f (y1, . . . , yN)|{yi=g[x](ih)}1≤i≤N

, where g[x](ih) is the value of the function g[x]
at time point t = ih. With this notation, we get

δ

δx(t)
f [g[x]] = d

dε
f [g[x + εδ(◦ − t)]

= lim
h→0

d

dε
f (g[x + εδ(◦ − t)](h), . . . , g[x + εδ(◦ − t)](Nh))

N−dim chain rule= lim
h→0

N∑
i=1

∂f

∂yi

∂g[x + εδ(◦ − t)](ih)

∂ε
(6.3)

= lim
h→0

N∑
i=1

h

︸ ︷︷ ︸
→∫

ds

1

h

∂f

∂yi

δg[x](ih)

δx(t)

=
∫

ds
δf [y]
δy(s)

∣∣
y=g

δg[x](s)
δx(t)

.

We here used in the last step the chain rule

lim
h→0

1

h

∂f

∂yi

= lim
h→0

lim
ε→0

f (y1, . . . , yi + ε
h
, yi+1, . . .) − f (y1, . . . , yi, yi+1, . . .)

ε

≡ δf [y]
δy(ih)

,

and employed the representation of the Dirac δ as a rectangle with height h−1 and
width h to identify the functional derivative (6.1) in the last step.
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6.1.3 Special Case of the Chain Rule: Fourier Transform

In the case of a Fourier transform x(t) = 1
2π

∫
eiωtX(ω) dω, we may apply

the chain rule to obtain the derivative of the functional f̂ defined on the Fourier
transform X by

f̂ [X] := f
[ 1

2π

∫
eiω◦X(ω) dω

︸ ︷︷ ︸
≡x(◦)

]
,

where ◦ is the argument of the function x(◦) on which the functional f depends.
We obtain by using (6.3)

δf̂ [X]
δX(ω)

= δ

δX(ω)
f

[
1

2π

∫
eiω◦X(ω) dω

]
=
∫

eiωs

2π︸︷︷︸
δx(s)
δX(ω)

δf [x]
δx(s)

ds.

So the relationship between the derivatives of a functional and its Fourier transform
has the inverse transformation properties than the function itself, indicated by the
opposite sign of ω and the appearance of the factor 1/2π .

We will frequently encounter expressions of the form

∫
δf [x]
δx(s)

y(s) ds (6.4)

=
∫

1

2π

∫
δf [x]
δx(s)

eiωsY (ω) dω ds

=
∫

1

2π

∫
eiωs δf [x]

δx(s)
ds

︸ ︷︷ ︸
= δf̂ [X]

δX(ω)

Y (ω) dω

=
∫

δf̂

δX(ω)
Y (ω) dω,

which are hence invariant under Fourier transform. We will make use of this
property when evaluating Feynman diagrams in Fourier domain.

6.2 Functional Taylor Series

The perturbative methods we have met so far often require the form of the action to
be an algebraic functional of the fields. We obtain such a form by functional Taylor
expansion. Assume we have a functional f [x] of a field x(t). We seek the analogue
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to the usual Taylor transform, which is a representation of the functional as the series

f [x] =
∞∑

n=0

∫
dt1 · · ·

∫
dtn an(t1, . . . , tn)

n∏
i=1

x(ti),

where we assume an to be symmetric with respect to permutations of its arguments.
Taking the k-th functional derivative δ

δx(t)
we get by the product rule

δk

δx(s1) · · · δx(sk)
f [x]

∣∣∣
x=0

=
∑

(i1,...,ik )∈S(1,..,k)

ak

(
si1 , . . . , sik

)

ak symm.︷︸︸︷= k! ak(s1, . . . , sk),

as only the term with n = k remains after setting x = 0 (S (1, . . . , k) indicates
the symmetric group, i.e. all permutations of 1, . . . , k). The application of the first
derivative yields, by the product rule, the factor k by applying the differentiation to
any of the k factors, the second application yields k − 1, and so on. We therefore
need to identify k! ak = δkf/δxk and obtain the form reminiscent of the usual n-
dimensional Taylor expansion

f [x] =
∞∑

n=0

∫
dt1 · · ·

∫
dtn

1

n!
δnf

δx(t1) · · · δx(tn) n

n∏
i=1

x(ti). (6.5)

The generalization to an expansion around another point than x ≡ 0 follows by
replacing x → x−x0. The generalization to functionals that depend on several fields
follows by application of the functional Taylor expansion for each dependence.



7Functional Formulation of Stochastic
Differential Equations

Abstract

This section casts stochastic dynamics into the previously developed language of
field theory. The resulting formulation is advantageous in several respects. First,
it expresses the dynamical equations into a path-integral, where the dynamic
equations give rise to the definition of an “action.” In this way, the perturbation
expansion with the help of Feynman diagrams or the loopwise expansions to
obtain a systematic treatment of fluctuations (in Chap. 13; Zinn-Justin, Quantum
Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996)) can
be applied. Within neuroscience, the recent review (Chow and Buice (J Math
Neurosci 5:8, 2015)) illustrates the first, the work by Buice and Cowan (Phys
Rev E 75:051919, 2007) the latter approach. Moreover, this formulation will be
essential for the treatment of disordered systems in Chap. 10, following the spirit
of the work by De Dominicis and Peliti (Phys Rev B 18:353, 1978) to obtain a
generating functional that describes an average system belonging to an ensemble
of systems with random parameters.

7.1 Stochastic Differential Equations

The current section is based on Refs. [7–15]. The material of this section has
previously been made publicly available in Ref. [6].

Many dynamic phenomena can be described by differential equations. Often,
the presence of fluctuations is represented by an additional stochastic forcing. We
therefore consider the stochastic differential equation (SDE)

dx(t) = f (x) dt + g(x) dW(t) (7.1)

x(0+) = a,
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where a is the initial value and dW a stochastic increment. Stochastic differential
equations are defined as the limit h → 0 of a dynamics on a discrete time lattice of
spacing h. For discrete time tl = lh, l = 0, . . . ,M , the solution of the SDE consists
of the discrete set of points xl = x(tl). For the discretization there are mainly two
conventions used, the Ito and the Stratonovich convention [1]. In case of additive
noise (g(x) = const.), where the stochastic increment in (7.1) does not depend on
the state x, the two conventions yield the same continuous-time limit [1]. However,
as we will see, different discretization conventions of the drift term (f (x)dt) lead
to different path-integral representations. The Ito convention defines the symbolic
notation of (7.1) to be interpreted as

xi − xi−1 = f (xi−1) h + aδi1 + g(xi−1) ξi,

where ξi is a stochastic increment that follows a normal distribution ρ(ξi) =
N(0, hD), called a Wiener increment. Here the parameter D controls the variance
of the noise. The definition of the stochastic differential equation implies Gaussian
increments [16, i.p. footnote [13] therein]. The following development of a path-
integral representation, however, is also possible for non-Gaussian increments [see
e.g. 2].

The term aδi1 ensures that, in the absence of noise ξ1 = 0 and assuming that
xi≤0 = 0, the solution obeys the stated initial condition x1 = a. If the variance of
the increment is proportional to the time step h, this amounts to a δ-distribution in
the autocorrelation of the noise ξ = dW

dt
dt . The Stratonovich convention, also called

mid-point rule, instead interprets the SDE as

xi − xi−1 = f

(
xi + xi−1

2

)
h + aδi1 + g

(
xi + xi−1

2

)
ξi . (7.2)

Both conventions can be treated simultaneously by defining

xi − xi−1 = f (αxi + (1 − α)xi−1) h + aδi1 + g(αxi + (1 − α)xi−1) ξi (7.3)

α ∈ [0, 1].

Here α = 0 corresponds to the Ito convention and α = 1
2 to Stratonovich.

In the following we will limit the treatment to so-called additive noise, where the
function g(x) = 1 is the identity. The two conventions, Ito and Stratonovich then
converge to the same limit, but their representation still bears some differences. Both
conventions appear in the literature. For this reason, we here keep the derivation
general, keeping the value α ∈ [0, 1] arbitrary.
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If the noise is drawn independently for each time step, which is the definition
of the noise being white, the probability density of the points x1, . . . , xM along the
path x(t) can be written as

p(x1, . . . , xM |a) ≡
∫

�M
i=1dξi ρ(ξi) δ(xi − yi(ξi , xi−1)), (7.4)

where, by (7.3), yi(ξi, xi−1) is understood as the solution at time point i given the
noise realization ξi and the solution until the previous time point xi−1: The solution
of the SDE starts at i = 0 with x0 = 0 so that ξ1 and a together determine x1. In
the next time step, ξ2 and x1 together determine x2, and so on. In the Ito convention
(α = 0) we have an explicit solution yi(ξi , xi−1) = xi−1 + f (xi−1) h + aδi1 + ξi ,
while the Stratonovich convention yields an implicit equation, since xi appears as an
argument of f in (7.2). We will see in (7.6) that the latter gives rise to a non-trivial
normalization factor for p, while for the former this factor is unity.

The notation yi(ξi, xi−1) indicates that the solution only depends on the last time
point xi , but not on the history longer ago. This property is called the Markov
property of the process. The form of (7.4) also shows that the density is correctly
normalized, because integrating over all paths

∫
dx1 · · ·

∫
dxM p(x1, . . . , xM |a)

=
∫

�M
i=1dξiρ(ξi)

∫
dxi δ(xi − yi(ξi, xi−1))

︸ ︷︷ ︸
=1

(7.5)

= �M
i=1

∫
dξiρ(ξi) = 1

yields the normalization condition of ρ(ξi), i = 1, . . . ,M , the distribution of the
stochastic increments.

In Sect. 7.2 we will look at the special case of Gaussian noise and derive the
so-called Onsager–Machlup path integral [3]. This path integral has a square in
the action, originating from the Gaussian noise. For many applications, this square
complicates the analysis of the system. The formulation presented in Sect. 7.3
removes this square on the expense of the introduction of an additional field, the
so-called response field. This latter formulation has the additional advantage that
responses of the system to perturbations can be calculated in compact form, as we
will see below.
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7.2 Onsager–Machlup Path Integral

We write (7.3) as

ξi = xi − xi−1 − f (αxi + (1 − α)xi−1) h − aδi−1,0 =: φ(xi |xi−1)

∂ξi

∂xi

= φ′ = 1 − αf ′h, (7.6)

and demand that xi obeys ξi −φ(xi |xi−1) =: z
!= 0 for each i. Using the substitution

δ(z) dz = δ(ξi − φ(xi |xi−1))|φ′(xi |xi−1)|dxi , we can express p(x1, . . . , xM |a)

defined by (7.4) as

p(x1, . . . , xM |a) = �M
i=1

∫
dξi ρ(ξi) |φ′(xi|xi−1)| δ(ξi − φ(xi |xi−1)) (7.7)

= �M
i=1ρ(φ(xi |xi−1)) |φ′(xi|xi−1)|

= �M
i=1ρ(xi − xi−1 − f (αxi + (1 − α)xi−1) h − aδi−1,0)

× (1 − αh f ′) ,

where we used that |φ′(xi |xi−1)| = |1 − αf ′h| = 1 − αf ′h for h → 0 and
differentiable f with f ′ ≡ f ′(αxi + (1 − α)xi−1). For the case of a Gaussian

white noise ρ(ξi) = N(0, Dh) = 1√
2πDh

e− ξ2
i

2Dh the variance of the increment is

〈ξiξj 〉 =
{

Dh i = j

0 i 
= j
(7.8)

= δij Dh.

Using the Gaussian noise and then taking the limit M → ∞ of Eq. (7.7) with 1 −
αf ′h → exp(−αf ′h) we obtain up to O(h2) corrections

p(x1, . . . , xM |a)

= �M
i=1ρ(xi − xi−1 − f (αxi + (1 − α)xi−1) h − aδi−1,0) (1 − αf ′h)

= �M
i=1

1√
2πDh

e− 1
2Dh (xi−xi−1−f (αxi+(1−α)xi−1) h−aδi−1,0)

2−αf ′h

=
(

1√
2πDh

)M

e
− 1

2D

∑M
i=1

(
xi−xi−1

h −f (αxi+(1−α)xi−1)−a
δi−1,0

h

)2−αf ′h
.
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We will now define a symbolic notation by recognizing limh→0
xi−xi−1

h
= ∂tx(t) as

well as limh→0
δi0
h

= δ(t) and limh→0
∑

i f (hi) h = ∫ f (t) dt

p[x|x(0+) = a]D√
2πDhx (7.9)

:= exp

(
− 1

2D

∫ T

0
(∂t x − f (x) − aδ(t))2 − αf ′(x) dt

)
D√

2πDhx (7.10)

= lim
M→∞ p(x1, . . . , xM |a) dx1 . . . dxM,

where we defined the integral measure D√
2πDhx := �M

i=1
dxi√
2πDh

to obtain a

normalized density 1 = ∫ D√
2πDhx p[x|x(0+) = a].

7.3 Martin–Siggia–Rose-De Dominicis–Janssen (MSRDJ) Path
Integral

The square in the action (7.9) sometimes has disadvantages for analytical reasons,
for example, if quenched averages are to be calculated, as we will do in Chapt. 10.
To avoid the square we will here introduce an auxiliary field, the response field x̃

(the name will become clear in Sect. 7.5). This field enters the probability functional
(7.4) by representing the δ-distribution by its Fourier integral

δ(x) = 1

2πi

∫ i∞

−i∞
dx̃ ex̃x . (7.11)

Replacing the δ-distribution at each time slice by an integral over x̃i at the
corresponding slice, (7.4) takes the form

p(x1, . . . , xM |a)

=
M∏
i=1

∫
dξiρ(ξi)

∫ i∞

−i∞
dx̃i

2πi
ex̃i(xi−xi−1−f (αxi+(1−α)xi−1)h−ξi−aδi−1,0)−αf ′h

(7.12)

=
M∏
i=1

∫ i∞

−i∞
dx̃i

2πi
ex̃i(xi−xi−1−f (αxi+(1−α)xi−1)h−aδi−1,0)−αf ′h+Wξ (−x̃i ) ,

Wξ (−x̃) ≡ ln
∫

dξiρ(ξi) e−x̃ξi = 〈e−x̃ξi 〉ξi .

Here Wξ (−x̃) is the cumulant-generating function of the noise process (see
Sect. 2.1) evaluated at −x̃. Note that the index i of the field x̃i is the same as the
index of the noise variable ξi , which allows the identification of the definition of the
cumulant-generating function. The distribution of the noise therefore only appears
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in the probability density in the form of Wξ(−x̃). For Gaussian noise (7.8) the
cumulant-generating function is

Wξ (−x̃) = Dh

2
x̃2. (7.13)

7.4 Moment-Generating Functional

The probability distribution (7.12) is a distribution for the random variables
x1, . . . , xM . We can alternatively describe the probability distribution by the
moment-generating functional (see Sect. 2.1) by adding the terms

∑M
l=1 jlxlh to

the action and integrating over all paths

Z(j1, . . . , jM) := �M
l=1

{∫ ∞

−∞
dxl exp (jlxlh)

}
p(x1, . . . , xM |a). (7.14)

Moments of the path can be obtained by taking derivatives (writing j =
(j1, . . . , jM))

∂

∂(h jk)
Z(j)

∣∣∣∣
j=0

= �M
l=1

{∫ ∞

−∞
dxl

}
p(x1, . . . , xM |a) xk

≡ 〈xk〉. (7.15)

The generating functional takes the explicit form

Z(j) = �M
l=1

{∫ ∞

−∞
dxl exp (jlxlh)

∫ i∞

−i∞
dx̃l

2πi

}
(7.16)

× exp

(
M∑
l=1

x̃l(xl − xl−1 − f (αxl + (1 − α)xl−1)h − aδl−1,0)

− αf ′h + Wξ(−x̃l)

)
,

where we used
∏M

l=1 exp(Wξ (−x̃l)) = exp(
∑M

l=1 Wξ (−x̃l)).
Letting h → 0 we now define the path integral as the generating functional (7.16)

and introduce the notations �M
l=1

∫∞
−∞ dxl

h→0→ ∫ Dx as well as �M
l=1

∫ i∞
−i∞

dx̃l

2πi

h→0→∫ D2πi x̃. Note that the different integral boundaries are implicit in this notation,
depending on whether we integrate over x(t) or x̃(t).
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Introducing in addition the cumulant-generating functional of the noise process
as

Wξ [−x̃] = ln Zξ [−x̃] = ln

〈
exp

(
−
∫ ∞

−∞
x̃(t) dW(t)

)〉
dW

:= lim
h→0

ln

〈
exp

(
M∑
l=1

−x̃lξl

)〉

ξ

= lim
h→0

M∑
l=1

ln〈exp(−x̃lξl)〉ξl

we may write symbolically for the probability distribution (7.12)

p[x|x(0+) = a] (7.17)

=
∫

D2πi x̃ exp

(∫ ∞

−∞
x̃(t)(∂t x − f (x) − aδ(t)) − αf ′ dt + Wξ [−x̃]

)

=
∫

D2πi x̃ exp

(
x̃T(∂tx − f (x) − aδ(t)) −

∫ ∞

−∞
αf ′ dt + Wξ [−x̃]

)
.

In the second line we use the definition of the inner product on the space of functions

xTy :=
∫ ∞

−∞
x(t)y(t) dt. (7.18)

This vectorial notation also reminds us of the discrete origin of the path integral.
Note that the lattice derivative appearing in (7.17) follows the definition ∂tx =
limh→0

1
h

(
xt/h − xt/h−1

)
. The convention is crucial for the moment-generating

function to be properly normalized, as shown in (7.5): Only the appearance of xt/h

alone within the Dirac-δ allows the path integral
∫ Dx to be performed to yield

unity.
We compactly denote the generating functional (7.16) as

Z[j ] =
∫

Dx

∫
D2πi x̃ exp

(
x̃T(∂tx − f (x) − aδ(t)) (7.19)

+ jTx − α1Tf ′(x) + Wξ [−x̃]
)
.

For Gaussian white noise we have with (7.13) the moment-generating functional
Wξ [−x̃] = D

2 x̃Tx̃. If in addition, we adopt the Ito convention, i.e. setting α = 0,
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we get

Z[j ] =
∫

Dx

∫
D2πi x̃ exp

(
x̃T(∂tx − f (x) − aδ(t)) + D

2
x̃Tx̃ + jTx

)
.

(7.20)

For M → ∞ and h → 0 the source term is exp
(∑M

l=1 jl xlh
)

h→0→
exp
(∫

j (t)x(t) dt
) ≡ exp(jTx). So the derivative on the left hand side of (7.15)

turns into the functional derivative (cf. Chap. 6)

∂

∂(hjk)
Z(j) ≡ lim

ε→0

1

ε

(
Z
(
j1, . . . , jk + ε

h
, jk+1, . . . , jM

)
− Z(j1, . . . , jk, . . . , jM)

)

h→0→ δ

δj (t)
Z[j ],

and the moment becomes 〈x(t)〉 at time point t = hk.
We can therefore express the n-th moment of the process by formally performing

an n-fold functional derivative

〈x(t) · · · x(s)︸ ︷︷ ︸
n

〉 = δn

δj (t) · · · δj (s)
Z[j ]

∣∣∣
j=0

.

7.5 Response Function in the MSRDJ Formalism

The path integral (7.12) can be used to determine the response of the system to an
external perturbation. To this end we consider the stochastic differential equation
(7.1) that is perturbed by a time-dependent drive −j̃ (t)

dx(t) = (
f (x(t)) − j̃ (t)

)
dt + dW(t)

x(0+) = a.

In the following we will only consider the Ito convention and set α = 0. We
perform the analogous calculation that leads from (7.1) to (7.16) with the additional
term −j̃ (t) due to the perturbation. In the sequel we will see that, instead of treating
the perturbation explicitly, it can be expressed with the help of a second source term.
The generating functional including the perturbation is

Z(j, j̃) = �M
l=1

{∫ ∞

−∞
dxl

∫ i∞

−i∞
dx̃l

2πi

}
(7.21)

× exp

(
M∑
l=1

x̃l(xl − xl−1 − f (xl−1)h

+ j̃l−1h − aδl−1,0) + jlxlh + Wξ (−x̃l)

)
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=
∫

Dx

∫
D2πi x̃

× exp

(∫ ∞

−∞
x̃(t)(∂t x − f (x) − aδ(t))

+ j (t)x(t) + j̃ (t−)x̃(t) dt + Wξ [−x̃]
)

,

where we moved the j̃−dependent term out of the parenthesis.
Note that the external field j̃l−1 couples to the field x̃l , because j̃ (t) must be

treated along the same lines as f (x(t)); in particular both terms’ time argument must
be delayed by a single time slice giving rise to the notation j̃ (t−)x̃(t). As before, the

moments of the process follow as functional derivatives (7.15) δ
δj (t)

Z[j, j̃ ]
∣∣∣
j=0

=
〈x(t)〉. Higher order moments follow as higher derivatives, in complete analogy to
(2.7).

The additional dependence on j̃ allows us to investigate the response of arbitrary
moments to a small perturbation localized in time, i.e. j̃ (t) = −εδ(t − s). In
particular, we characterize the average response of the first moment with respect
to the unperturbed system by the response function χ(t, s)

χ(t, s) := lim
ε→0

1

ε

(
〈x(t)〉j̃=−εδ(·−s) − 〈x(t)〉j̃=0

)
(7.22)

= lim
ε→0

1

ε

δ

δj (t)

(
Z[j, j̃ − εδ(t − s)] − Z[j, j̃ ]

)∣∣∣∣
j=j̃=0

= − δ

δj (t)

δ

δj̃ (s)
Z[j, j̃ ]

∣∣∣∣
j=j̃=0

= −〈x(t) x̃(s)〉,

where we used the definition of the functional derivative from the third to the fourth
line.

So instead of treating a small perturbation explicitly, the response of the system
to a perturbation can be obtained by a functional derivative with respect to j̃ : j̃

couples to x̃, j̃ contains perturbations, therefore x̃ measures the response and is
the so-called response field. The response function χ(t, s) can then be used as a
kernel to obtain the mean response of the system to a small external perturbation of
arbitrary temporal shape.

There is an important difference for the response function between the Ito and
Stratonovich formulation, that is exposed in the time-discrete formulation. For the
perturbation j̃ (t) = −εδ(t − s), we obtain the perturbed equation, where s

h
denotes
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the discretized time point at which the perturbation is applied. The perturbing term
must be treated analogously to f , so

xi − xi−1 = f (αxi + (1 − α)xi−1) h + ε
(
αδi, s

h
+ (1 − α)δi−1, s

h

)
+ ξi

α ∈ [0, 1].

Consequently, the value of the response function χ(s, s) at the time of the perturba-
tion depends on the choice of α. We denote as xε

j the solution after application of

the perturbation, as x0
j the solution without; for i < j the two are identical and the

equal time response is

χ(s, s) = lim
ε→0

1

ε

(
xε

s
h

− x0
s
h

)
(7.23)

= lim
ε→0

1

ε

(
f
(
αxε

s
h

+ (1 − α)x s
h
−1

)
− f

(
αx0

s
h

+ (1 − α)x s
h
−1

))
h

+ αδ s
h , s

h
+ (1 − α)δ s

h−1, s
h

h→0= α,

because the contribution of the deterministic evolution vanishes due to the factor
h. So for α = 0 (Ito convention) we have χ(s, s) = 0, for α = 1

2 (Stratonovich)
we have χ(s, s) = 1

2 . The Ito convention is advantageous in this respect, because it
leads to vanishing contributions in Feynman diagrams (see Chap. 9) with response
functions at equal time points [4]. In (7.21) this property is reflected by the
displacement of the indices in the term x̃l j̃l−1h.

By the same argument it follows that

〈x(t)x̃(s)〉 ≡

⎧⎪⎪⎨
⎪⎪⎩

0 ∀t ≤ s Ito

0 ∀t < s Stratonovich
1
2 t = s Stratonovich

. (7.24)

We also observe that the initial condition contributes a term −aδl−1,0. Conse-
quently, the initial condition can alternatively be included by setting a = 0 and
instead calculate all moments from the generating functional Z[j, j̃ − aδ] instead
of Z[j, j̃ ]. In the following we will therefore skip the explicit term ensuring the
proper initial condition as it can be inserted by choosing the proper value for the
source j̃ . See also [5, Sec. 5.5].
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For the important special case of Gaussian white noise (7.8), the generating
functional, including the source field j̃ coupling to the response field, takes the
form

Z[j, j̃ ] =
∫

Dx

∫
D2πi x̃ exp

(
x̃T(∂tx − f (x)) + D

2
x̃Tx̃ + jTx + j̃Tx̃

)
,

(7.25)

where we again used the definition of the inner product (7.18).
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8Ornstein–Uhlenbeck Process: The Free
Gaussian Theory

Abstract

In the previous chapter we have seen how to formulate stochastic differential
equations by help of an action. This is a necessary step to apply methods from
field-theory, such as the perturbation expansion, to these stochastic dynamical
systems. The current section will deal with the next important step, the identifi-
cation of a Gaussian solvable system. We will find that the Ornstein–Uhlenbeck
process, a coupled set of linear stochastic differential equations, plays the role of
the Gaussian solvable theory. To compute the propagators of this Gaussian theory
in Fourier domain, moreover, we employ the useful technique of the residue
theorem, which will be needed to compute perturbation corrections in frequency
domain.

8.1 Definition

We will here study a first example of application of the MSRDJ formalism to a
linear stochastic differential equation, the Ornstein–Uhlenbeck process [1]. This
example is fundamental to all further development, as it is the free Gaussian part
of the theory, the dynamic counterpart of the Gaussian studied in Sect. 3.1. The
stochastic differential equation (7.1) in this case is

dx = m x dt + dW, (8.1)

x ∈ R
N,

m ∈ R
N×N ,

〈dWi(t)dWj (s)〉 = Dij δt,s dt,
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where dWi are Wiener increments that may be correlated with covariance matrix
Dij . The generalization of the formalism developed in Chap. 7 to this set of N

coupled stochastic differential equations is straightforward and left as an exercise.
The result is the action

S[x, x̃] =
∫

x̃T(t) (∂t − m) x(t) + x̃(t)T D

2
x̃(t) dt (8.2)

= x̃T (∂t − m) x + x̃T D

2
x̃,

where the transposed T in the first line is meant with respect to the N different
components and in the second line in addition for the time argument; as a
consequence, we need to think about the matrix D in the second line as containing
an additional δ(t − s). We see that this notation considers different time points on
the same footing as different components of x.

We may write the action in a more symmetric form by introducing the compound

field y(t) =
(

x(t)

x̃(t)

)
as

S[y] = S[x, x̃] = −1

2
yT A y

= −1

2

∫∫
yT(t) A(t, s) y(s) dt ds,

A(t, s) =
(

0 ∂t + mT

−∂t + m −D

)
δ(t − s), (8.3)

where the transpose in the first line is meant as referring to the field index (i.e.,
distinguishing between x and x̃) as well as to the time argument. The minus sign in
the upper right entry follows from integration by parts as

∫
x̃T(t) (∂t − m) x(t) dt =∫

xT(t)
(−∂t − mT

)
x̃(t) dt , assuming that the boundary terms vanish.

8.2 Propagators in Time Domain

The moment-generating functional Z[j, j̃ ], corresponding to Eq. (8.3), is

Z[j, j̃ ] =
∫

Dx

∫
Dx̃ exp

(
S[x, x̃] + jTx + j̃Tx̃

)

Z[j̄ ] =
∫

Dy exp
(

− 1

2
yTA y + j̄T y

)
, (8.4)
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where we introduced j̄ =
(

j

j̃

)
. This is the time-continuous analogue of Eq. (3.3).

Following the derivation in Sect. 3.1, we need to determine the propagators � in the
sense

� = A−1, (8.5)∫
A(s, t) �(t, u) dt = diag(δ(s − u)).

The diagonal matrix of Dirac-δ is the continuous version of the identity matrix with
respect to the matrix multiplication

∫
f (t) g(t) dt , the inner product on our function

space.
The latter form also explains the name propagator or Green’s function: By

its definition in Eq. (8.5), � is the fundamental solution of the linear differential
operator A. Given we want to solve the inhomogeneous problem

∫
A(t, s) y(s) ds = f (t), (8.6)

we see that the application of
∫

du A(t, u)◦ from left on y(u), defined as

y(u) =
∫

�(u, s) f (s) ds,

reproduces with the property (8.5) the right- hand side f (t) of Eq. (8.6). So � is
indeed the Green’s function or fundamental solution to A.

An analogous calculation as the completion of square (see exercises in Sect. 9.6)
then leads to

Z[j̄ ] = exp

(
1

2
j̄T� j̄

)
. (8.7)

So we need to determine the four entries of the two-by-two matrix

�(t, u) =
(

�xx(t, u) �xx̃(t, u)

�x̃x(t, u) �x̃x̃ (t, u)

)
=
( 〈x(t)x(u)〉 〈x(t)x̃(u)〉

〈x̃(t)x(u)〉 〈x̃(t)x̃(u)〉
)

,

where the latter equality follows from comparing the second derivatives of (8.4) to
those of (8.7), setting j̄ = 0 in the end. The factor 1

2 in (8.7) drops out, because the
first differentiation, by product rule, needs to act on each of the two occurrences of
j̄ in (8.7) in turn for the diagonal element, and acting on each of the off-diagonal
elements, producing two identical terms in either case. The elements are hence the
correlation and response functions of the fields x and x̃.
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8.3 Propagators in Fourier Domain

The inversion of (8.5) can most conveniently be done in frequency domain. The
Fourier transform defined as y(t) = F−1 [Y ] (t) = 1

2π

∫
eiωt Y (ω) dω is unitary,

hence does not affect the integration measures and moreover transforms scalar
products as

xTy :=
∫

x(t) y(t) dt (8.8)

=
∫∫

dω

2π

dω′

2π
X(ω) Y (ω′)

∫
ei(ω+ω′)tdt

︸ ︷︷ ︸
2π δ(ω+ω′)

=
∫

dω

2π
X(−ω)Y (ω) =: XTY.

If we use the convention that every
∫
ω

= ∫
dω
2π

comes with a factor (2π)−1 we get
for a linear differential operator A[∂t ] that yTA[∂t ]y → Y TA[iω]Y . We therefore

obtain (8.3) in Fourier domain with Y =
(

X

X̃

)
as

S[X, X̃] = −1

2
Y TAY

A(ω′, ω) = 2π δ(ω′ − ω)

(
0 iω + mT

−iω + m −D

)
. (8.9)

We see that the form of A is self-adjoint with respect to the scalar product (8.8),
because bringing A to the left- hand side, we need to transpose and transform ω →
−ω, which leaves A invariant. Hence with the Fourier transformed sources J̄ , we
have a well-defined Gaussian integral

Z[J̄ ] =
∫

DY exp

(
−1

2
Y TAY + J̄ TY

)
. (8.10)

Since (8.9) is diagonal in frequency domain, we invert the two-by-two matrix
separately at each frequency. The moment-generating function in frequency domain
(8.7) therefore follows by determining the inverse of A in the sense

∫
dω′

2π
A(ω,ω′)�(ω′, ω′′) = 2π δ(ω − ω′′),
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because 2πδ is the identity with regard to our scalar product
∫

dω
2π

. So we obtain

Z[J̄ ] = exp

(
1

2

∫∫
ω′ω

J̄ T(−ω) �(ω,ω′) J̄ (ω′)
)

= exp

(
1

2
J̄ T� J̄

)
,

(8.11)

�(ω,ω′) (8.9)= 2π δ(ω − ω′)
(

(−iω + m)−1 D
(
iω + mT

)−1
(−iω + m)−1(

iω + mT
)−1

0

)
,

= (2π)2

⎛
⎝ δ2Z

δJ (−ω)δJ (ω′)
δ2Z

δJ (−ω)δJ̃ (ω′)
δ2Z

δJ̃ (−ω)δJ (ω′)
δ2Z

δJ̃ (−ω)δJ̃ (ω′)

⎞
⎠

(8.10)=
( 〈X(ω)X(−ω′)〉 〈X(ω)X̃(−ω′)〉

〈X̃(ω)X(−ω′)〉 0

)
,

where the signs of the frequency arguments in the second last line are flipped with
respect to the signs of the frequencies in J (ω), because the source term is J̄ TY ,
involving the inverse of the sign. The additional factor (2π)2 in the third line comes
from the source terms J̄ TY = ∫

dω
2π

J̄ T(−ω)Y (ω), which yield a factor (2π)−1

upon each differentiation. Overall, we see that for each contraction of a pair of
Xα,Xβ ∈ {X, X̃} we get a term

〈Xα(ω′)Xβ(ω)〉 = (2π)2 δ2Z

δJα(−ω′) δJ β(ω)

= �αβ(ω′, ω)

∝ 2π δ(ω − ω′).

The Fourier transform F [f ] (ω) is a linear functional of a function f , so that the
functional derivative follows as

δ

δf (s)
F [f ] (ω) = δ

δf (s)

∫
e−iωt f (t) dt = e−iωs .

Assuming a one-dimensional process in the following, m < 0 ∈ R, we can apply
the chain rule (6.3) to calculate the covariance function in time domain as

�xx(t, s) ≡ 〈x(t)x(s)〉 (8.12)

= δ2

δj (t)δj (s)
Z[j, j̃ ]

∣∣∣∣
j=j̃=0

=
∫

dω′ dω e−iω′t e−iωs︸ ︷︷ ︸
= δJ (ω′)

δj (t)
δJ (ω)
δj (s)

δ2

δJ (ω′)δJ (ω)
Z[J, J̃ ]

∣∣∣∣
J=J̃=0︸ ︷︷ ︸

(2π)−2�xx(−ω′,ω)∝(2π)−1δ(ω+ω′)
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ω′=−ω=
∫

dω

2π
eiω(t−s) (−iω + m)−1 D (iω + m)−1

= 1

2πi

∫ i∞

−i∞
dz ez(t−s) (−z + m)−1 D (z + m)−1

t>s= −D

2m
em(t−s),

where we used the functional chain rule (6.3) in the third step and got a factor 2
from the two derivatives acting in the two possible orders on the J (canceled by 1

2
from the Eq. (8.11)). We used the residue theorem in the last step, where we closed
the contour in the half plane with �(z) < 0 to ensure that the contribution from the
arc of the integration vanishes. Note that m < 0 to ensure stability of (8.1), so that
the covariance is positive as it should be. The minus sign arises from the winding
number due to the form (−z+m)−1 = −(z−m)−1 of the pole. For t < s it follows
by symmetry that �xx(t, s) = −D

2m
em|t−s|; here we need to close the integration

contour in the opposite half plane to ensure that the contribution from the arc of
the contour vanishes. In the last step we assumed a one-dimensional dynamics, the
penultimate line also holds for N dimensions. For N dimensions, we would need to
transform into the space of eigenvectors of the matrix and apply the residue theorem
for each of these directions separately.

The response functions are

�xx̃(t, s) =〈x(t)x̃(s)〉 = �x̃x(s − t) (8.13)

=
∫

dω′ dω e−iω′t e−iωs︸ ︷︷ ︸
= δJ (ω′)

δj (t)
δJ̃ (ω)
δj (s)

δ2

δJ (ω′)δJ̃ (ω)
Z[J, J̃ ]

∣∣∣∣
J=J̃=0︸ ︷︷ ︸

(2π)−2�xx̃(−ω′,ω)∝(2π)−1 δ(ω′+ω)

=
∫

dω

2π
eiω(t−s) (−iω + m)−1

= − 1

2πi

∫ i∞

−i∞
ez(t−s) (z − m)−1 dz

= − H(t − s) em (t−s),

which is consistent with the interpretation of the response to a Dirac-δ perturbation
considered in Sect. 7.5. We assumed a one-dimensional dynamics in the last step.
The Heaviside function arises if t < s: One needs to close the integration contour
in the right half plane to get a vanishing contribution along the arc, but no pole is
encircled, because m < 0 for stability.

For the diagrammatic formulation, we follow the convention proposed in [2,
p.136ff, Fig. 4.2]: We represent the response function by a straight line with an
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arrow pointing in the direction of time propagation, a correlation function as a line
with two outgoing arrows

�(t, s) =
( 〈x(t)x(s)〉 〈x(t)x̃(s)〉

〈x̃(t)x(s)〉 〈x̃(t)x̃(s)〉
)

=
( x(t)

� �
x(s) x(t)

�
x̃(s)

x̃(t )
�

x(s)
0

)
. (8.14)

The propagators of the linear and hence Gaussian theory are also often called bare
propagators. In contrast, propagators including perturbative corrections are called
full propagators. The arrows are chosen such that they are consistent with the flow
of time, reflected by the properties:

• Response functions are causal, i.e. 〈x(t)x̃(s)〉 = 0 if t ≤ s. For t = s the
vanishing response relies on the Ito convention (see Sect. 7.5).

• As a consequence, all loops formed by propagators � connecting to a vertex at
which x(t) and x̃(s) interact at identical time points (see also coming section) or
in a causal fashion, i.e. s ≥ t , vanish.

• Second moments of response fields vanish 〈x̃(t)x̃(s)〉.
• For zero external sources j = j̃ = 0, the expectation values of the fields vanish

〈x(t)〉 = 0, as well as for the response field 〈x̃(t)〉 = 0, because the action
equation (8.4) is a centered Gaussian.
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9Perturbation Theory for Stochastic Differential
Equations

Abstract

In this chapter we want to combine the perturbative method developed in Chap. 4
with the functional representation of stochastic differential equations introduced
in Chap. 7. The Ornstein–Uhlenbeck process studied as a special case in Chap. 8
in this context plays the role of the solvable, Gaussian part of the theory. We
here want to show how to calculate perturbative corrections that arise from
non-linearities in the stochastic differential equation, corresponding to the non-
Gaussian part of the action.

9.1 Vanishing Moments of Response Fields

We now would like to extend the system from the previous section to the existence
of a non-linearity in the stochastic differential equation (8.1) of the form

dx(t) = f (x(t)) dt − j̃ (t) dt + dW(t), (9.1)

where f (x) is some non-linear function of x. We first want to show that, given the
value of the source j = 0, all moments of the response field vanish. In the derivation
of the path-integral representation of Z in Chap. 7, we saw that Z belongs to a
properly normalized density, as demonstrated by (7.5), so Z[j = 0] = 1. The same
normalization of course holds in the presence of an arbitrary value of j̃ in Eq. (9.1),
because j̃ corresponds to an additional term on the right-hand side of the stochastic
differential equation and our derivation of Z holds for any right-hand side. As a
consequence we must have

Z[0, j̃ ] ≡ 1 ∀ j̃ . (9.2)
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We hence conclude that any derivative by j̃ of (9.2) must vanish, so that all moments
of x̃ vanish

δn

δj̃ (t1) · · · δj̃(tn)
Z[0, j̃ ] = 〈x̃(t1) · · · x̃n(tn)〉 ≡ 0 ∀ n > 0.

We note that the latter condition holds irrespective of the value of j̃ ; we may also
evaluate the moments of x̃ at some non-zero j̃ , corresponding to a particular value
of the inhomogeneity on the right-hand side of Eq. (9.1).

We also note that this argument does not rely on any perturbation expansion; it is
an exact property that follows directly from the structure of the action, namely the
equivalence of the source field j̃ to an additive term in the deterministic function f .
In the literature, one also finds perturbative arguments why moments of the response
field vanish. For completeness, this argument is reviewed in Sect. 9.5.

9.2 Feynman Rules for SDEs in Time Domain and Frequency
Domain

An arbitrary given action first needs to be converted into algebraic form in the fields,
typically by Taylor expansion. We then have a stochastic differential equation with
a linear, solvable part and an additional non-linearity, for example

dx(t) + x(t) dt − α

2!x
2(t) dt = dW(t). (9.3)

The action is therefore S[x, x̃] = S0[x, x̃] − α
2! x̃Tx2, where S0[x, x̃] = x̃T(∂t +

1) x + D
2 x̃Tx̃ is the Gaussian part. After having determined the propagators

corresponding to the Gaussian part S0 of the action, given in frequency domain
by (8.11) with m = −1,

= x(t)x(s) x(t)x̃(s)

x(t)x(s) x(t)x̃(s)
=

= ,
1
2D e−|t−s| −H(t − s) e−(t−s)

−H(s − t) e−(s−t ) 0

x(t) x(s) 

x̃(t) x(s)

x(t) x̃(s)

0

(9.4)
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we need to evaluate the Feynman diagrams of corrections that contain the interaction
vertex in Eq. (9.3)

x(t)

x̃(t)

x(t)

= − α

2! x̃Tx2 = − α

2! dt x̃(t)x2(t).

A perturbation correction to the mean value at first order (one interaction vertex) is
hence caused by the diagram

Δxx
Δxx̃j (t) = dtj (t)(−1)

α

2! dt xx̃(t, t xx(t , t )

= dtj (t)
α

2! dt H(t − t ) e−(t−t ) D

2

= dtj (t)
α

2!
∞

0
dτ e−τ D

2

= dtj (t)
αD

4
.

The combinatorial factor of the diagram is unity, because there is only a single
way to attach the directed propagator �xx̃ to the x̃-leg of the interaction vertex.
The label j in the diagram above is meant to indicate that the x(t), contracted by
the directed propagator �xx̃ , belongs to a source term. The appearance of a single
external leg j shows that the contribution is a perturbative correction to the mean of
the process. This correction is obtained as

〈x(t)〉 = δ

δj (t)
Z[j, j̃ ]∣∣

j=j̃=0 (9.5)

= αD

4
,

which is independent of t . This value is also naively expected, by noting that the
variance in the unperturbed system is 〈x2〉 = D

2 , so the expectation value of the
non-linear term on the right hand side of (9.3) is α D

4 .
Note that we could have drawn a second diagram in which a directed propagator

�xx̃ contracts one of the legs x(t) with the leg x̃(t) of the same interaction ver-
tex—such a diagram, however, yields a vanishing contribution, because �xx̃(t, t) ≡
0; the two fields belonging to the same vertex have the same time-argument.
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For problems that are time-translation invariant, often a formulation in Fourier
domain leads to simpler expressions. By help of Sect. 8.3, we transfer the Feynman
rules from time to frequency domain. We first express the interaction vertex in terms
of the Fourier transforms of the fields to get

F→
X(ω2)

X̃(ω1 )

X(ω3)

= − α

2!
dω1

2π

dω2

2π

dω3

2π

× dt ei(ω1+ω2+ω3)t

2π δ(ω1+ω2+ω3)

X̃(ω1)X(ω2)X(ω3)

= − α

2!
dω1

2π

dω2

2π
X̃(ω1)X(ω2)X(−ω1 − ω2).

So we get from the Dirac-δ that the frequencies at each vertex need to sum up to
zero. We may therefore think of the frequency “flowing” through the vertex and
obeying a conservation equation—the frequencies flowing into a vertex also must
flow out. We note that we get one factor (2π)−1 less than the number of legs of
the vertex. The number of factors (2π)−1 therefore equals the number of remaining
momentum integrals.

Moreover, we see that every external leg comes with a factor (2π)−1 from the
integration over ω and a factor 2π from the connecting propagator, so that the overall
number of such factors is not affected. Each propagator connecting an internal pair
of X or X̃ comes, by (8.11), with a factor 2π . Due to the conservation of the
frequencies also at each propagator by the Dirac-δ, in the final expression there are
hence as many frequency integrals left as we have factors (2π)−1. We may therefore
also only keep a single frequency dependence of the propagator and write the term
2πδ explicitly, hence defining

2πδ(ω + ω′) �(ω) := �(ω,−ω′), (9.6)

to get the matrix of propagators

2πδ(ω + ω′) �(ω) =
( 〈X(ω)X(ω′)〉 〈X(ω)X̃(ω′)〉

〈X̃(ω)X(ω′)〉 0

)
(9.7)

= 2πδ(ω + ω′)
(

(−iω − 1)−1 D (iω − 1)−1 (−iω − 1)−1

(iω − 1)−1 0

)
.
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As an example, the first-order correction to the first moment then has the form

J (−ω) = dω

2π
J (−ω)

dω

2π
2πδ(ω + ω xx̃(ω)

× dω1

2π

dω2

2π

−α

2! 2πδ(ω + ω1 + ω2) 2πδ(ω1 + ω2 xx(ω1)

= dω

2π
J (−ω) 2 xx̃(ω)

−α

2!
dω1

2π
xx(ω1)

= dω

2π
J (−ω) 2π δ(ω) (−iω − 1)−1 −α

2!
× dω1

2π
(−iω1 − 1)−1 D (iω1 − 1)−1

= J (0)
α

2!
dω1

2π
(−iω1 − 1)−1 D (iω1 − 1)−1 ,

(9.8)

where the connecting external line � = (−iω − 1)−1 has the shown sign, because
J (−ω) couples to X(ω), so we need to take the upper right element in (9.7). The last
factor � � = �xx(ω1) = (−iω1 − 1)−1 D (iω1 − 1)−1 is the covariance function
connecting the two X(ω1) and X(ω2) legs of the vertex.

Since originally each integral over ωi comes with (2π)−1 and each conservation
of sums of ω in either a propagator or a vertex comes with 2πδ(

∑
i ωi), we have as

many factors (2π)−1 as we have independent momentum integrals. We summarize
the rules as follows:

• An external leg ending on J (ω) attaches to a variable X(−ω) within the diagram
and analogous for J̃ (ω) and X̃(−ω).

• At each vertex, the sum of all ω flowing into the vertex must sum up to zero,
since we get a term ∝ δ(

∑n
i=1 ωi).

• The frequencies that enter a propagator line must also exit, since we get a term
∝ δ(ω + ω′).

• We have as many factors (2π)−1 as we have independent ω integrals left after all
constraints of ω-conservation have been taken into account.

• The number of ω integrals hence must correspond to the number of loops: all
other frequencies are fixed by the external legs.

So we may infer the frequencies on each propagator line by rules analogous to
Kirchhoff’s law: Treating the frequencies as if they were conserved currents. Using
these rules we could have written down the fourth line in Eq. (9.8) directly.
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The above integral by

1

2π

∫
dω1 (−iω1 − 1)−1 D (iω1 − 1)−1 (9.9)

= 1

2πi

∫ i∞

−i∞
dz (−z − 1)−1 D (z − 1)−1

= 1

2πi

∫
γ

dz (−z − 1)−1 D (z − 1)−1

= D

2

hence evaluates to α
2

D
2 J (0). We here closed the path γ in the positive direction,

which is the left half-plane (with �(z) < 0), we get a +1 from the winding number.
We encircle the pole z = −1 from the left factor and need to replace z = −1 in the
right term. An additional minus sign comes from (−z − 1)−1 = −(z + 1)−1.

The result, being proportional to J (0), shows that the correction only affects the
stationary expectation value at ω = 0, which therefore is (by the functional chain
rule)

〈x(t)〉 = δW

δj (t)

∣∣∣
j=0

=
∫

e−iωt︸ ︷︷ ︸
δJ (ω)
δj (t)

δŴ

δJ (ω)

∣∣∣
J=0

dω =
∫

e−iωt δ(−ω)
αD

4
dω = αD

4
,

which is valid to first order in α and which is of course the same as (9.5), obtained
in time domain. We here used that due to the source being of the form J TX =∫

dω
2π

J (−ω)X(ω) that δŴ
δJ (ω)

= 1
2π

2π αD
4 δ(−ω).

9.3 Diagrams with More Than a Single External Leg

In calculating diagrams with more than a single external leg, we remember that the
n-fold repetition of an external leg must come from the factor

exp
(
jTx

) =
∑
n

(
jTx

)n
n! .

So a diagram with n-legs of identical type j comes with n time-integrals and a
factor n!−1. This is completely analogous to the case of the n-fold repetition of an
interaction vertex.
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It is instructive to first derive the correction to W—hence we compute the j -
dependent contribution—and only in a second step differentiate the result by j to
obtain the correction to the cumulants.

For example, a diagram contributing to the correction of the variance of the
process would come with a factor 1

2!
∫∫

dt ds j (t) j (s) prior to taking the second
derivative by j . Concretely, let us consider the diagram

2 · 2 · 2 · Δxx

Δxx

Δx̃x

Δx̃x

j (t) j (s)

= 1

2! dt ds j (t)j (s)

× 2 · 2 · 2 · 1

2!
α

2!
2

dt ds xx(t, t xx(t , s x̃x(t , s x̃x(s , s)

=:f (t,s)

=: 1

2! dt ds j (t) j (s) f (t, s).

The combinatorial factor arises from two possibilities of connecting the �xx

propagator of the left external leg to either of the vertices and the two possibilities
of choosing the incoming x-leg of the vertex to which we connect this external
leg. Another factor two arises from the two possibilities of connecting the �xx

propagator to either of the two x-legs of the right vertex. All other contractions
are uniquely determined then; so in total we have a factor 2 · 2 · 2.

In calculating the contribution to the covariance function 〈〈x(t)x(s)〉〉, the second
cumulant of the process, we need to take the second functional derivative. Because
the factor j appears twice, we obtain by the application of the functional product
rule the correction to δ2W/δj (t) δj (s)

1

2!
(
f (t, s) + f (s, t)

)
, (9.10)

which is a manifestly symmetric contribution as it has to be for a covariance
function. A single term f (t, s) is not necessarily symmetric, as seen from the
appearance of the non-symmetric functions �x̃x .

We may calculate the same contribution in frequency domain. To assign the
frequencies to the legs we use that at each line the frequencies must have opposite
sign on either end and the sums of all frequencies at a vertex must sum up to zero;
the frequency of the left field of the propagator is the argument of the corresponding
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function �(ω), according to (9.6). So we get

I := 2 · 2 · 2 ·−ωΔxxω

(−ω + ω )Δxx (ω − ω )

−ω Δx̃xω

−ωΔx̃xω

(J)ω(J −ω)

= 1

2!
dω

2π
J (ω)

× dω

2π
2 · 2 · 2 · 1

2!
α

2!
2

xx(− xx(−ω + ω x̃x(−ω x̃x(−ω)

=:F(ω)

J (−ω)

=: 1

2!
dω

2π
J (ω) F(ω) J (−ω).

(9.11)

We observe that the contribution can be written as an integral over one frequency,
the frequency within the loop ω′. Each of the sources is attached by a propagator to
this loop integral. We will see in the following that the inner integral thus behaves
as an effective two-point vertex—what is known as a 1PI vertex, to be introduced in
Chap. 11.

The contribution to the variance therefore becomes with the functional chain rule
and δJ (ω)/δj (t) = e−iωt

δ2W

δj(t)δj (s)
=
∫∫

dω dω′ e−iωt e−iω′s δ2W

δJ (ω)δJ (ω′)
.

By the last line in (9.11) and the application of the product rule we see that
δ2I

δJ (ω)δJ (ω′) = 1
2!

1
2π

δ(ω + ω′)
(
F(ω) + F(−ω)

)
so that

δ2I

δj (t)δj (s)
=
∫

dω

2π
eiω(s−t ) 1

2!
(
F(ω) + F(−ω)

)
. (9.12)

Again, the product rule causes a symmetric contribution of the diagram. The back
transform can be calculated with the help of the residue theorem. Multiple poles of
order n can be treated by Cauchy’s differential formula

f (n)(a) = n!
2πi

∮
f (z)

(z − a)n+1
dz.

9.4 Appendix: Unitary Fourier Transform

A unitary transform is defined as an isomorphism that preserves the inner product.
In our example the space is the vector space of all functions and the inner (scalar)
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product is

(f, g) =
∫ ∞

−∞
f ∗(t) g(t) dt. (9.13)

The Fourier transform is a linear mapping of a function f (t) to F(ω), which can
be understood as the projection onto the orthogonal basis vectors uω(t) := 1

2π
eiωt .

The basis is orthogonal because

(uω, uω′) =
∫ ∞

−∞
ei(ω′−ω)t

(2π)2 dt = δ(ω′ − ω)

2π
. (9.14)

The Fourier transform is a unitary transformation, because it preserves the form of
the scalar product on the two spaces

(f, g) :=
∫

f ∗(t) g(t) dt =
∫

dω

∫
dω′

∫
dt

ei(−ω+ω′)t

(2π)2︸ ︷︷ ︸
≡δ(−ω+ω′)/(2π)

F ∗(ω)G(ω′)

=
∫

dω

2π
F ∗(ω) G(ω) =: (F,G). (9.15)

So the scalar products in the two spaces have the same form.
Changing the path integral from

∫ Dx(t) to
∫ DX(ω), each individual time

integral can be expressed by all frequency integrals as

∫
dx(t) =

∫
dω

ei tω

2π

∫
dX(ω). (9.16)

The transform (9.16) is a multiplication with the (infinite dimensional) matrix Utω =
ei tω

2π
. This matrix U ≡ (u−∞, . . . , u∞) has the property

(
UT ∗U

)
ωω′

(9.14)= δ(ω − ω′)
2π

,

which is the infinite dimensional unit matrix, from which follows in particular that
| det(U)| = const. Hence changing the path integral

∫ Dx(t) to
∫ DX(ω) we only

get a constant from the determinant. Since we are only interested in derivatives of
generating functionals, this constant has no consequence. However, the integration
boundaries change. The integral

∫ Dx(t) goes over all real-valued functions x(t).
Hence the corresponding Fourier transforms X(ω) have the property X(−ω) =
X(ω)∗.
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The action in (8.3) instead of the standard scalar product on C (9.13) employs
the Euclidean scalar product between functions x and y of the form

xTy =
∫

dt x(t) y(t).

As a consequence, in frequency domain we get

∫
dω

2π
X(−ω) Y (ω). (9.17)

9.5 Appendix: Vanishing Response Loops

We would like to treat the non-linear function f (x) in (9.1) perturbatively, so

we consider its Taylor expansion f (x(t)) = f (1)(0) x(t) + ∑∞
n=2

f (n)(0)
n! x(t)n.

We here restrict the choice of f to functions with f (0) = 0, because an offset
can be absorbed into a non-vanishing external source field j̃ 
= 0. For clarity of
notation we here treat the one-dimensional case, but the extension to N dimensions
is straightforward. We may absorb the linear term in the propagator, setting m :=
f (1)(0) as in the linear case (8.2). The remaining terms yield interaction vertices in
the action

S[x, x̃] = x̃T(∂t − f (1)(0)
)
x + x̃T D

2
x̃︸ ︷︷ ︸

S0[x,x̃]

−
∞∑

n=2

f (n)(0)

n! x̃Txn

︸ ︷︷ ︸
V [x,x̃]

,

which are of the form

V [x, x̃] =
∞

n=2

f (n)(0)

n! x̃T xn

x̃(t) xn(t) dt

= x̃(t ) x(t)
,

. . . (9.18)

where the ellipsis indicates the remaining legs attached to an x, one leg for each
power in x.

We saw in the previous section that the response functions in the Gaussian case
are causal, i.e. 〈x(t)x̃(s)〉 = 0 for t ≤ s and also that 〈x̃(t)x̃(s)〉 = 0 ∀t, s. We will
now show that this property is conserved in presence of an arbitrary non-linearity
that mediates a causal coupling. To this end consider a perturbative correction to
the response function with a single interaction vertex. Since the interaction vertices
are of the form (9.18), they couple only equal time arguments (see underbrace
in Eq. (9.18)). A contribution to a response function 〈x(t)x̃(s)〉 requires a bare
propagator � from x̃(s) to one of the three right legs of the vertex (9.18) and one
additional propagator � from the left leg of the vertex to the external x(t). The
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remaining x-legs of the vertex need to be contracted by the propagator � � . Since
both propagators to the external legs mediate a causal interaction and the vertex
forces the intermediate time points of both propagators to be identical, it implies
that the correction is unequal zero only for t > s. We also see from this argument
that a generalization to causal interactions is straightforward.

By the inductive nature of the proof of connectedness in Sect. 5.2, this argument
holds for arbitrary orders in perturbation theory, since the connected diagrams with
i +1 vertices are formed from those with i: If causality holds for response functions
with i vertices, this property obviously transcends to order i + 1 by the above
argument, hence it holds at arbitrary order.

The same line of arguments shows that all correlators of the form
〈x̃(t) · · · x̃(s)〉 = 0 vanish. We know this property already from the general
derivation in Sect. 9.1, which only required the normalization condition and of
course holds for arbitrary non-linearities f . Often one finds in the literature
diagrammatic arguments for the vanishing moments, which we will show here
for completeness.

Indeed, at lowest order, the form of (8.14) shows that second moments of x̃

vanish. The first moment of x̃, by differentiating (8.7) by δZ/δj̃ (t)
∣∣
j̃=0 = 〈x̃(t)〉 =∫

�x̃(t)x(s)j (s) ds as well vanishes for j = 0, which even holds for j̃ 
= 0 due to
the absence of �x̃x̃ = 0. The independence of j̃ is consistent with the possibility to
absorb the source term j̃ in the inhomogeneity of the differential equation.

In the non-linear case, corrections to the mean value would come from graphs
with one external j̃ leg. Such a leg must be connected by the response function �
to one of the x-legs of the vertex, so that again a free x̃(t) leg of the vertex remains.
Due to the vanishing mean x̃, we only have the option to connect this free leg to one
of the x(t)-legs of the vertex by another response function. We still get a vanishing
contribution, because response functions (in the here considered Ito convention)
vanish at equal time points, 〈x(t)x̃(t)〉 = 0 (see Sect. 7.5), and all time points of
fields on the interaction vertex are identical. The generalization to general causal
relationships, i.e. x̃(t), x(s) with t ≥ s on the vertex, holds analogously. The same
property holds in the Stratonovich convention, as outlined below.

The same argument holds for all higher moments of x̃, where for each external
line j̃ one propagator � attaches to the corresponding x-legs of the vertex. The
remaining single x̃-leg of the vertex again cannot be connected in a way that would
lead to a non-vanishing contribution. The argument generalizes to higher order
corrections, by replacing the bare propagators by the full propagators, which, by
the argument given above, have the same causality properties.

Comparing this result to the literature [1, see p. 4914 after eq. (9)] and [2, see
eq. (7)], a difference is that these works considered the Stratonovich convention. An
additional term − 1

2f ′(x) is present in the action (7.19), because the Stratonovich
convention amounts to α = 1

2 . The response function at zero time lag then is
〈x(t)x̃(t)〉 = 1

2 (see Sect. 7.5). The contributions of loops closed by response
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functions 〈x̃(t)x(t)〉 that end on the same vertex of the form (9.18) are

. . .

= n x(t)x̃(t)

= 1
2

f (n)

n! x(t)n−1

= 1

2
∂x

f (n)

n! x(t)n,

where two of the n x-legs are shown explicitly. The wiggly line with the ellipsis
indicates the n−1 remaining legs of the interaction vertex. The combinatorial factor
n in the first line stems from the n possible ways to attach the propagator to one of
the n factors x of the vertex. The last line shows that the remaining term is the
opposite of the contribution − 1

2f ′(x) that comes from the functional determinant in
(7.19). In conclusion, all contributions of closed loops of response functions on the
same vertex are canceled in the Stratonovich convention in the same way as in the
Ito convention.

9.6 Problems

(a) Extension toN Dimensions

Convince yourself that the action of an N-dimensional Ornstein–Uhlenbeck process
with correlated white noise and covariance matrix Dij is indeed given by Eq. (8.2).
(2 points).

(b) Linear Differential Operators, Propagators, Gaussian Integrals

In this exercise we want to review the connection between Gaussian integrals,
propagators (Green’s functions), and the inversion of symmetric matrices. To illus-
trate these connections let us assume the linear first-order homogeneous differential
equation

dx

dt
− m x = 0.

We want to calculate the Green’s function in various ways. First, solve the defining
equation for the fundamental solution of the differential operator d

dt
− m also called

the Green’s function �

d�(t)

dt
− m �(t) = δ(t)
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analytically. It is sufficient to state what the solution is. Show that a particular
solution of the inhomogeneous equation

dx

dt
− m x = f (t)

is given by

x(t) =
∫

�
(
t − t ′

)
f
(
t ′
)
dt ′.

Now consider the time-discrete version

xi − xi−1

h
− m xi−1 = δi,1

h
, (9.19)

where we assume a discrete time axis t = l h with l ∈ [1, . . . ,M]. Assuming
x≤0 = 0, derive an iterative expression for the solution and an explicit expression
for xl = x(l h). Show that in the limit h → 0 the result is identical to the analytical
solution in continuous time. (2 points).

Now we want to express the Green’s function with the help of a Gaussian integral.
To this end write the iterative equation with the help of a Dirac-δ constraint. Show
that we may define the generating function as

Z(j1, . . . , jM) :=
M∏
l=1

∫ ∞

−∞
dxl δ(xl − xl−1 − m xl−1 h − δl,1) ejlxlh (9.20)

x0 := 0

to obtain the Green’s function �(k h) as ∂Z
∂(hjk)

.
Show that Z is properly normalized

Z(0, . . . , 0) = 1. (9.21)

We would like to bring Eq. (9.20) into the form of a Gaussian integral. We
therefore introduce a second set of variables x̃l with l ∈ [1, . . . ,M] and show that
the generating function with j̃ = (− 1

h
, 0, . . . , 0) can be brought to the form

Z
(
j1, . . . , jM, j̃1, . . . , j̃M

) =
M∏
l=1

{∫ ∞

−∞
dxl

1

2πi

∫ i∞

−i∞
dx̃l

}
(9.22)

× exp

(
M∑
i=1

x̃i(xi − xi−1 − m xi−1 h)

+ jixi h + j̃i x̃i h

)
.

Here, in addition, the source term j̃i x̃ih was introduced.
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Using the linearity in the xi of the iteration (9.19), show that the Green’s function
is (Hint: Where has the initial condition gone in this notation?)

�(k h) = ∂jkZ

(
j, j̃1 = − 1

h
, j̃>1 = 0

) ∣∣∣
j=0

linearity= − ∂2Z

∂(hjk)∂(hj̃1)

∣∣
j=j̃=0

def. as≡ −〈xkx̃1〉.

(2 points).
To expose the form of a Gaussian integral, now write equation (9.22) in

symmetric form, introducing yi =
(

xi

x̃i

)
and j̄i =

(
ji

j̃i

)
and show that the result

is a Gaussian integral of the form

Z(j̄) = Z
(
j1, . . . , jM, j̃1, . . . , j̃M

)

=
M∏
l=1

{∫ ∞

−∞
dxl

1

2πi

∫ i∞

−i∞
dx̃l

}
exp

(
−1

2
yTAy + j̄Ty

)
,

A =
(

Axx Axx̃

Ax̃x Ax̃x̃

)
.

Determine the entries of the sub-matrices Axx , Ax̃x, Axx̃ , and Ax̃x̃ and show that
the iterative solution x = (x1, . . . xM) solving (9.19) also obeys

Ax̃x x = (−1, 0, . . . , 0). (9.23)

(2 points). It follows that the solution of the iteration effectively inverts the matrix
Ax̃x.

Convince yourself that A is self-adjoint (symmetric). Show that the inverse of A

is again of block-wise form

A−1 =
(

0 A−1
x̃x

A−1
xx̃

0

)

and that consequently by applying the result of (3.3) and using that we must have
Z(j̄ = 0) = 1 (9.21) we have

Z
(
j, j̃
) = exp

(
jT A−1

x̃x
j̃
)
. (9.24)

(2 points). Argue with the linearity of the problem (9.23) that the iterative solution
for (9.19) in the case

xi − xi−1

h
− m xi−1 = − j̃i

h
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can be obtained from the above-determined solution as

xi =
i∑

k=0

(1 + hm)i−k j̃k. (9.25)

Furthermore, argue along the same lines with (9.23) that solution can also be seen
as the inversion of

Ax̃x x =j̃ . (9.26)

With this insight, determine the explicit form of (9.24) and show that its limit h → 0
and M → ∞ is

Z
[
j, j̃
] = exp

(∫∫
j (t) H

(
t − t ′

)
em(t−t ′) j̃

(
t ′
)
dt dt ′

)
. (9.27)

So the Green’s function can be obtained as

�(t − t ′) = − δ

δj (t)

δ

δj̃ (t ′)
Z
∣∣
j=j̃=0.

(2 points).

(c) Propagators by Completion of Square

Perform the calculation from Eqs. (8.4) to (8.7) explicitly by completion of
the square, following along the lines of the calculation in Sect. 3.2 for the
N-dimensional Gaussian. You may shift the integration variable as y(t) →
y(t) + ∫

ds �(t, s) j̄ (s) and use that Z(0) = 1 is properly normalized. Also
observe that Eq. (8.3) is self-adjoint, i.e. acting on the left argument in a scalar
product has the same form (following from integration by parts and assuming
vanishing boundary terms). (4 points).

(d) Unitarity of the Jacobian of the Time Evolution Operator

Prove that the Jacobian T ′ of the functional T : x → dx −f (x) dt , where the right-
hand side follows the Ito convention, has a unit determinant. To this end, consider
discretization of the time axis, as in Chap. 7, and show that

∫ Dx δ[dx−f (x) dt] =
1. Then use

∫ Dx δ[T [x]] det(T ′) = 1, which can be shown by the N-dimensional
chain rule.
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(e) Langevin Equation with Non-white Noise

In Chap. 8, we considered the case of a stochastic differential equation driven by
white noise; its covariance function is ∝ δ(τ ). In the coming lectures we will
encounter effective equations of motion that are driven by a noise η that is non-
white. An example is Eq. (10.19) that appears in the context of a random network.
We want to see how such properties appear in the path-integral representation. To
this end we extend this notion to the case of non-white noise, namely a stochastic
differential equation

∂tx(t) = f (x(t)) + η(t), (9.28)

where the driving noise is defined by its moment-generating functional

Zη[j ] =
〈
ejTη

〉
η

= exp
(
jTm + 1

2
jT c j

)
,

where jTcj = ∫∫
dt dt ′ j (t) c(t, t ′) j (t ′) and c(t, t ′) = c(t ′, t) is symmetric.

Determine all cumulants of η. What kind of process is it? (2 points).
By using the Fourier representation of the Dirac-δ-functional

δ[x] =
∫

D2πi x̃ exp
(
x̃Tx

)
,

derive the moment-generating functional Z(j) = 〈ejTx〉 for the process x that
follows the stochastic differential equation (9.28). (2 points).

(f) Perturbative Corrections in a Non-linear SDE

We here consider the example of the non-linear stochastic differential equation from
the lecture, similar to (9.3), but with a parameter m < 0 controlling the leak term

dx(t) = m x(t) dt + ε

2!x
2(t) dt + dW(t), (9.29)

where 〈dW(t)dW(s)〉 = D δt,s dt is a Gaussian white noise process. First neglect
the perturbation by the non-linear term by setting ε = 0. What is the mean
value 〈x(t)〉, the covariance 〈〈x(t)x(s)〉〉, and the linear response of the mean value
〈〈x(t)x̃(s)〉〉 of the process? Combine the latter two into the propagator matrix, once
written in time domain, once in frequency domain. (2 points).

We would now like to obtain corrections to these cumulants by diagrammatic
techniques. We already obtained the perturbation correction to first order in ε for the
mean value in Sect. 9.2. Adapt the result for the SDE (9.29) (2 points). Determine
the perturbative corrections to the covariance. Is there a correction to the covariance
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at first order in ε? Argue in terms of diagrams. (2 points). Then draw the diagrams
that contribute to the covariance at lowest non-vanishing order in ε. (4 points). Write
down the corresponding integrals in time domain (2 points) and in frequency domain
(2 points).

Show that in frequency domain all diagrams decompose into the propagators
attaching the two external lines j (ω) and a single loop, which amounts to a single
frequency integral. Evaluate the integrals in frequency domain for all diagrams to
obtain the correction to the power spectrum of the process, the propagator �xx(ω).
(2 points).
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10Dynamic Mean-Field Theory for Random
Networks

Abstract

The seminal work by Sompolinsky et al. (Phys Rev Lett 16 61:259, 1988) has
a lasting influence on the research on random recurrent neural networks until
today. Many subsequent studies have built on top of this work. The presentation
in the original work summarizes the main steps of the derivations and the most
important results. In this chapter we show the formal calculations that reproduce
these results. After communication with Crisanti we could confirm that the
calculations by the original authors are indeed to large extent identical to the
presentation here. The original authors recently published an extended version of
their work (Crisanti and Sompolinsky, Phys Rev E 98:062120, 2018). In deriving
the theory, this chapter also presents the extension of the model to stochastic
dynamics due to additive uncorrelated Gaussian white noise (Schuecker et al.,
Phys Rev X 8:041029, 2018).

10.1 The Notion of a Mean-Field Theory

While disordered equilibrium systems show fascinating properties such as the spin-
glass transition [1, 2], new collective phenomena arise in non-equilibrium systems:
Large random networks of neuron-like units can exhibit chaotic dynamics [3–5]
with important functional consequences. Information processing capabilities, for
example, are optimal close to the onset of chaos [6–8].

The model studied by Sompolinsky et al. [3] becomes solvable in the large N

limit and thus allows the rigorous study of the transition to chaos. It has been the
starting point for many subsequent works (e.g., [9–15]).

We here derive its mean-field theory by using the field-theoretical formulation
developed so far, amended by methods to deal with the disorder due to the randomly
drawn connectivity.
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In the physics literature the term “mean-field approximation” indeed refers to
at least two slightly different approximations. Often it is understood in the sense
of Curie–Weiss mean-field theory of ferromagnetism. Here it is a saddle point
approximation in the local order parameters, each corresponding to one of the spins
in the original system [17, i.p. section 4.3]. To lowest order, the so-called tree-
level or mean-field approximation, fluctuations of the order parameter are neglected
altogether. Corrections within what is known as loopwise expansion (see Chap. 13)
contain fluctuations of the order parameter around the mean. The other use of the
term mean-field theory, to our knowledge, originates in the spin glass literature [18]:
Their equation 2.17 for the magnetization m resembles the Curie–Weiss mean-field
equation as described before. A crucial difference is, though, the presence of the
Gaussian variable z, which contains fluctuations. Their theory, which they termed “a
novel kind of mean-field theory,” contains fluctuations. The reason for the difference
formally results from a saddle point approximation performed on the auxiliary field
q instead of the local spin-specific order parameter for each spin as in the Curie–
Weiss mean-field theory. The auxiliary field only appears in the partition function
of the system after averaging over the quenched disorder, the frozen and disordered
couplings J between spins.

In the same spirit, the work by Sompolinsky and Zippelius [19] obtained a
mean-field equation that reduces the dynamics in a spin glass to the equation
of a single spin embedded into a fluctuating field, whose statistics is determined
self-consistently (see their equation 3.5). This saddle point approximation of the
auxiliary field is sometimes also called “dynamic mean-field theory,” because the
statistics of the field is described by a time-lag-dependent autocorrelation function.
By the seminal work of Sompolinsky et al. [3] on a deterministic network of non-
linear rate units (see their eqs. (3) and (4)), this technique entered neuroscience.
The presentation of the latter work, however, spared many details of the actual
derivation, so that the logical origin of this mean-field theory is hard to see from the
published work. The result, the reduction of the disordered network to an equation
of motion of a single unit in the background of a Gaussian fluctuating field with
self-consistently determined statistics, has since found entry into many subsequent
studies. The seminal work by Amit and Brunel [20] presents the analogue approach
for spiking neuron models, for which to date a more formal derivation as in the case
of rate models is lacking. The counterpart for binary model neurons [4, 21] follows
conceptually the same view.

The presentation given here exposes these tight relation between the dynamical
mean-field theory of spin glasses and neuronal networks in a self-contained manner.

10.2 Definition of the Model and Generating Functional

We study the coupled set of first-order stochastic differential equations

dx(t) + x(t) dt = Jφ(x(t)) dt + dW (t), (10.1)
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where

Jij ∼
{
N(0,

g2

N

)
i.i.d. for i 
= j

0 for i = j
(10.2)

are i.i.d. Gaussian random couplings, φ is a non-linear gain function applied
element-wise, the dWi are pairwise uncorrelated Wiener processes with
〈dWi(t)dWj (s)〉 = D δij δst dt . For concreteness we will use

φ(x) = tanh(x), (10.3)

as in the original work [3].
We formulate the problem in terms of a generating functional from which we

can derive all moments of the activity as well as response functions. Introducing the
notation x̃Tx =∑i

∫
x̃i(t)xi(t) dt , we obtain the moment-generating functional as

derived in Chap. 7

Z[j, j̃](J) =
∫

Dx
∫

Dx̃ exp
(
S0[x, x̃] − x̃TJφ (x) + jTx + j̃Tx̃

)

with S0[x, x̃] = x̃T (∂t + 1) x + D

2
x̃Tx̃, (10.4)

where the measures are defined as
∫ Dx = limM→∞ �N

j=1�
M
l=1

∫∞
−∞ dxl

j and
∫ Dx̃ = limM→∞ �N

j=1�
M
l=1

∫ i∞
−i∞

dx̃l
j

2πi
. Here the superscript l denotes the l-th time

slice and we skip the subscript D2πi , as introduced in Eq. (7.9) in Sect. 7.2, in
the measure of Dx̃. The action S0 is defined to contain all single unit properties,
therefore excluding the coupling term −x̃TJφ (x), which is written explicitly.

10.3 Self-averagingObservables

We see from Eq. (10.4) that the term that couples the different neurons has a special
form, namely

hi(t) := [Jφ (x)]i
=
∑
j

Jij φ(xj (t)), (10.5)

which is the sum of many contributions. In the first exercises (see Chap. 2), we
have calculated the distribution of the sum of independent random numbers. We
found that the sum approaches a Gaussian if the terms are weakly correlated, given
the number of constituents is sufficiently large. In general, such results are called
concentration of measure [22, i. p. section VII], because its probability distribution
(or measure) becomes very peaked around its mean value.
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In the following derivation we are going to find a similar behavior for hi due to
the large number of synaptic inputs summed up in Eq. (10.5). The latter statement is
about the temporal statistics of hi ∼ N(μi, σ

2
i ). We can try to make a conceptually

analogous, but different statement about the statistics of hi with respect to the
randomness of Jij : The couplings Jij are constant in time; they are therefore often
referred to as frozen or quenched disorder. Observing that each hi approaches
a Gaussian the better the larger the N , we may ask how much the parameters μi

and σi of this Gaussian vary from one realization of Jij to another. If this variability
becomes small, because i was chosen arbitrarily, this implies that also the variability
from one neuron i to another neuron k at one given, fixed Jij must be small—this
property is called self-averaging: The average over the disorder, over an ensemble
of systems, is similar to the average over many units i in a single realization from
the ensemble. As a result, we may hope to obtain a low-dimensional description of
the statistics for one typical unit. This is what we will see in the following.

As a consequence of the statistics of hi to converge to a well-defined distribution
in the N → ∞ limit, we may hope that the entire moment-generating functional
Z[j](J), which, due to J is a random object, shows a concentration of measure as
well. The latter must be understood in the sense that for most of the realizations of
J the generating functional Z is close to its average 〈Z[j](J)〉J. We would expect
such a behavior, because the mean and variance of the hi approach certain, fixed
values, the more precise the larger the network size is. Such a statement makes an
assertion about an ensemble of networks. In this case it is sufficient to calculate the
latter. It follows that all quantities that can be calculated from Z[j](J) can then also
be—approximately—obtained from 〈Z[j](J)〉J. Each network is obtained as one
realization of the couplings Jij following the given probabilistic law (10.2). The
goal of the mean-field description derived in the following is to find such constant
behavior independent of the actual realization of the frozen disorder.

The assumption that quantities of interest are self-averaging is implicit in
modeling approaches that approximate neuronal networks by networks with random
connectivity; we expect to find that observables of interest, such as the rates,
correlations, or peaks in power spectra, are independent of the particular realization
of the randomness.

To see the concept of self-averaging more clearly, we may call the distribution
of the activity in the network p[x](J) for one particular realization J of the
connectivity. Equivalently, we may express it as its Fourier transform, the moment-
generating functional Z[j](J). Typically we are interested in some experimental
observables O[x]. We may, for example, think of the population-averaged autocor-
relation function

〈Oτ [x]〉x(J) = 1

N

N∑
i=1

〈xi(t + τ )xi(t)〉x(J),
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where the expectation value 〈〉x(J) is over realizations of x for one given realization
of J. It is convenient to express the observable in its Fourier transform O[x] =∫ Dj Ô[j] exp(jTx) (with suitably defined Ô and measure D) using Eq. (2.4)

〈O[x]〉x(J) =
∫

Dj Ô[j] Z[j](J),

where naturally the moment-generating functional appears as
Z[j](J) = 〈exp(jTx)〉x(J). The mean observable averaged over all realizations of J
can therefore be expressed as

〈〈O[x]〉x(J)〉J =
∫

Dj Ô[j] 〈Z[j](J)〉J,

in terms of the generating functional that is averaged over the frozen disorder, as
anticipated above.

We call a quantity self-averaging, if its variability with respect to the realization
of J is small compared to a given bound ε. Here ε may, for example, be determined
by the measurement accuracy of an experiment. With the short hand δO[x] :=
O[x] − 〈〈O[x]〉x(J)〉J we would like to have

〈[〈δO[x]〉x(J)]2〉J =
〈 (∫

Dx p[x](J) δO[x]
)2 〉

J
� ε, (10.6)

a situation illustrated in Fig. 10.1. Analogously to the mean, the variance of the
observable can be expressed in terms of the average of the product of a pair of
generating functionals

Z̄2[j, j′] := 〈Z[j](J) Z[j′](J)〉J (10.7)

as

〈δQ2(J)〉J =
∫∫

DjDj′ δÔ[j] δÔ[j′] Z2[j, j′], (10.8)

where δQ(J) = 〈δO[x]〉x(J). Taking the average over products of generating
functional is called the replica method: we replicate a system with identical
parameters and average the product.

In the particular case that Z̄2[j, j′] factorizes into a product of two functionals
that individually depend on j and j′, the variance of any observable vanishes. We
will see in the following that to leading order in N , the number of neurons, this will
be indeed the case for the model studied here.
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p(O)

Fig. 10.1 Self-averaging observable O. The variability δO over different realizations of the
random disorder is small, so that with high probability, the measured value in one realization is
close to the expectation value 〈O〉 over realizations

10.4 Average over the Quenched Disorder

We now assume that the system described by Eq. (10.1) shows self-averaging
behavior, independent of the particular realization of the couplings, as explained
above. To capture these properties that are generic to the ensemble of the models,
we introduce the averaged functional

Z̄[j, j̃] := 〈Z[j, j̃](J)〉J (10.9)

=
∫

�ij dJij N
(

0,
g2

N
, Jij

)
Z[j, j̃](J).

We use that the coupling term exp(−∑i 
=j Jij

∫
x̃i(t)φ(xj (t)) dt) in Eq. (10.4)

factorizes into �i 
=j exp(−Jij

∫
x̃i(t)φ(xj (t)) dt) as does the distribution over

the couplings (due to Jij being independently distributed). We make use of the
couplings appearing linearly in the action so that we may rewrite the term depending
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on the connectivity Jij for i 
= j

∫
dJijN

(
0,

g2

N
, Jij

)
exp

(−Jij yij

) = 〈exp(−Jij yij )
〉
Jij ∼N(0,

g2
N )

(10.10)

with yij :=
∫

x̃i(t)φ(xj (t)) dt.

The form in the first line is that of the moment-generating function (2.5) of the
distribution of the Jij evaluated at the point −yij . For a general distribution of i.i.d.
variables Jij with the n-th cumulant κn, we hence get with Eq. (2.10)

〈
exp(−Jij yij )

〉
Jij

= exp
(∑

n

κn

n! (−yij )
n
)
.

For the Gaussian case studied here, where the only non-zero cumulant is κ2 = g2

N
,

we obtain

〈
exp

(−Jij yij

)〉
Jij ∼N(0,

g2
N

)
= exp

(
g2

2N
y2
ij

)

= exp

(
g2

2N

(∫
x̃i(t)φ(xj (t)) dt

)2
)

.

We reorganize the last term, including the sum
∑

i 
=j coming from the product �i 
=j

in (10.9), as

g2

2N

∑
i 
=j

(∫
x̃i(t)φ(xj (t)) dt

)2

= g2

2N

∑
i 
=j

∫ ∫
x̃i(t)φ(xj (t)) x̃i(t

′)φ(xj (t
′)) dt dt ′

= 1

2

∫ ∫ (∑
i

x̃i(t)x̃i (t
′)
) ⎛
⎝g2

N

∑
j

φ(xj (t))φ(xj (t
′))

⎞
⎠ dt dt ′

− g2

2N

∫ ∫ ∑
i

x̃i(t)x̃i (t
′)φ(xi(t))φ(xi(t

′)) dt dt ′,

where we used
(∫

f (t)dt
)2 = ∫ ∫ f (t)f (t ′) dt dt ′ in the first step and

∑
ij xiyj =∑

i xi

∑
j yj in the second. The last term is the diagonal element that is to be taken

out of the double sum. It is a correction of order N−1 and will be neglected in the
following. The disorder-averaged generating functional (10.9) therefore takes the
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form

Z̄[j, j̃] =
∫

Dx
∫

Dx̃ exp
(
S0[x, x̃] + jTx + j̃Tx̃

)
(10.11)

× exp
(1

2

∫ ∞
−∞

∫ ∞
−∞

⎛
⎝∑

i

x̃i (t)x̃i (t
′)

⎞
⎠
⎛
⎝g2

N

∑
j

φ(xj (t))φ(xj (t ′))

⎞
⎠

︸ ︷︷ ︸
=:Q1(t,t ′)

dt dt ′
)
.

The coupling term in the last line shows that both sums go over all indices, so the
system has been reduced to a set of N identical systems coupled to one another in
an identical manner. The problem is hence symmetric across neurons; this is to be
expected, because we have averaged over all possible realizations of connections.
Within this ensemble, all neurons are treated identically.

The coupling term contains quantities that depend on four fields. We now aim to
decouple these terms into terms of products of pairs of fields. The aim is to make
use of the central limit theorem, namely that the quantity Q1 indicated by the curly
braces in Eq. (10.11) is a superposition of a large (N) number of (weakly correlated)
contributions, which will hence approach a Gaussian distribution. Introducing Q1
as a new variable is therefore advantageous, because we know that the systematic
fluctuation expansion is an expansion for the statistics close to a Gaussian. To lowest
order, fluctuations are neglected altogether. The outcome of the saddle point or tree
level approximation to this order is the replacement of Q1 by its expectation value.
To see this, let us define

Q1(t, s) :=g2

N

∑
j

φ(xj (t))φ(xj (s)) (10.12)

and enforce this condition by inserting the Dirac-δ functional

δ

⎡
⎣− N

g2
Q1(s, t) +

∑
j

φ(xj (s)) φ(xj (t))

⎤
⎦ (10.13)

=
∫

DQ2 exp

⎛
⎝
∫∫

Q2(s, t)

⎡
⎣− N

g2
Q1(s, t) +

∑
j

φ(xj (s)) φ(xj (t))

⎤
⎦ ds dt

⎞
⎠ .

We here note that as for the response field, the field Q2 ∈ iR is purely imaginary
due to the Fourier representation Eq. (7.11) of the δ. The enforcement of a constraint
by such a conjugate auxiliary field is a common practice in large N field theory [23].

We aim at a set of self-consistent equations for the auxiliary fields. We treat
the theory as a field theory in the Q1 and Q2 in their own right. We therefore
introduce one source k, k̃ for each of the fields to be determined and drop the
source terms for x and x̃; this just corresponds to a transformation of the random
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variables of interest (see Sect. 2.2). Extending our notation by defining QT
1 Q2 :=∫∫

Q1(s, t) Q2(s, t) ds dt and x̃TQ1x̃ := ∫∫
x̃(s) Q1(s, t) x̃(t) ds dt we hence

rewrite Eq. (10.11) as

Z̄Q[k, k̃] :=
∫

DQ1

∫
DQ2 (10.14)

× exp

(
− N

g2 QT
1 Q2 + N ln Z[Q1,Q2] + kTQ1 + k̃TQ2

)

Z[Q1,Q2] =
∫

Dx

∫
Dx̃ exp

(
S0[x, x̃] + 1

2
x̃TQ1x̃ + φ(x)TQ2φ(x)

)
,

where the integral measures DQ1,2 must be defined suitably. In writing
N ln Z[Q1,Q2] we have used that the auxiliary fields couple only to sums of
fields

∑
i φ2(xi) and

∑
i x̃2

i , so that the generating functional for the fields x and x̃
factorizes into a product of N factors Z[Q1,Q2]. The latter only contains functional
integrals over the two scalar fields x, x̃. This shows that we have reduced the
problem of N interacting units to that of a single unit exposed to a set of external
fields Q1 and Q2.

The remaining problem can be considered a field theory for the auxiliary fields
Q1 and Q2. The form of Eq. (10.14) clearly exposes the N dependence of the action
for these latter fields: It is of the form

∫
dQ exp(Nf (Q)) dQ, which, for large N ,

suggests a saddle point approximation.
In the saddle point approximation [19] we seek the stationary point of the action

determined by

0 = δS[Q1,Q2]
δQ{1,2}

= δ

δQ{1,2}

(
− N

g2 QT
1 Q2 + N ln Z[Q1,Q2]

)
. (10.15)

This procedure corresponds to finding the point in the space (Q1,Q2) which
provides the dominant contribution to the probability mass. This can be seen by
writing the probability functional as p[x] = ∫∫ DQ1DQ2 p[x; Q1,Q2] with

p[x; Q1,Q2] = exp

(
− N

g2 QT
1 Q2

+
∑

i

ln
∫

Dx̃ exp

(
S0[xi, x̃] + 1

2
x̃TQ1x̃ + φ(xi)

TQ2φ(xi)

))

b[Q1,Q2] :=
∫

Dx p[x; Q1,Q2], (10.16)

where we defined b[Q1,Q2] as the contribution to the entire probability mass for
a given value of the auxiliary fields Q1,Q2. Maximizing b therefore amounts to
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Fig. 10.2 Finding saddle
point by maximizing
contribution to probability:
The contribution to the
overall probability mass
depends on the value of the
parameter Q, i.e. we seek to
maximize
b[Q] := ∫ Dx p[x; Q]
(10.16). The point at which
the maximum is attained is
denoted as Q∗, the value
b[Q∗] is indicated by the
hatched area

the condition (10.15), illustrated in Fig. 10.2. We here used the convexity of the
exponential function.

A more formal argument to obtain Eq. (10.15) proceeds by introducing the
Legendre–Fenchel transform of ln Z̄ as

�[Q∗
1,Q

∗
2] := sup

k,k̃

kTQ∗
1 + k̃TQ∗

2 − ln Z̄Q[k, k̃],

the vertex-generating functional or effective action (see Chap. 11 and [17, 24]). It
holds that δ�

δq1
= k and δ�

δq2
= k̃, the equations of state, derived in Eq. (11.10). The

tree-level or mean-field approximation amounts to the approximation �[Q∗
1,Q

∗
2] �

−S[q1, q2], as derived in Eq. (13.5). The equations of state, for vanishing sources
k = k̃ = 0, therefore yield the saddle point equations

0 = k = δ�

δQ∗
1

= − δS

δQ∗
1

0 = k̃ = δ�

δQ∗
2

= − δS

δQ∗
2
,

identical to Eq. (10.15). This more formal view has the advantage of being
straightforwardly extendable to loopwise corrections (see Sect. 13.3).

The functional derivative in the stationarity condition Eq. (10.15) applied to
ln Z[Q1,Q2] produces an expectation value with respect to the distribution (10.16):
the fields Q1 and Q2 here act as sources. This yields the set of two equations

0 = − N

g2
Q∗

1(s, t) + N

Z

δZ[Q1,Q2]
δQ2(s, t)

∣∣∣∣
Q∗

(10.17)

↔ Q∗
1(s, t) = g2 〈φ(x(s))φ(x(t))〉Q∗ =: g2Cφ(x)φ(x)(s, t)
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0 = − N

g2 Q∗
2(s, t) + N

Z

δZ[Q1,Q2]
δQ1(s, t)

∣∣∣∣
Q∗

↔ Q∗
2(s, t) = g2

2
〈x̃(s)x̃(t)〉Q∗ = 0,

where we defined the average autocorrelation function Cφ(x)φ(x)(s, t) of the non-
linearly transformed activity of the units. The second saddle point Q∗

2 = 0 vanishes.
This is because all expectation values of only x̃ fields vanish, as shown in Sect. 9.1.
This is true in the system that is not averaged over the disorder and remains true in
the averaged system, since the average is a linear operation, so expectation values
become averages of their counterparts in the non-averaged system. If Q2 was non-
zero, it would alter the normalization of the generating functional through mixing
of retarded and non-retarded time derivatives which then yield acausal response
functions [19].

The expectation values 〈〉Q∗ appearing in (10.17) must be computed self-
consistently, since the values of the saddle points, by Eq. (10.14), influence the
statistics of the fields x and x̃, which in turn determines the functions Q∗

1 and Q∗
2 by

Eq. (10.17).
Inserting the saddle point solution into the generating functional (10.14) we get

Z̄∗ ∝
∫

Dx

∫
Dx̃ exp

(
S0[x, x̃] + g2

2
x̃TCφ(x)φ(x)x̃

)
. (10.18)

As the saddle points only couple to the sums of fields, the action has the important
property that it decomposes into a sum of actions for individual, non-interacting
units that feel a common field with self-consistently determined statistics, charac-
terized by its second cumulant Cφ(x)φ(x). Hence the saddle point approximation
reduces the network to N non-interacting units, or, equivalently, a single unit
system. The step from Eq. (10.11) to Eq. (10.18) is therefore the replacement of
the term Q1, which depends on the very realization of the x by Q∗

1, which is a given
function, the form of which depends only on the statistics of the x. This step allows
the decoupling of the equations and again shows the self-averaging nature of the
problem: the particular realization of the x is not important; it suffices to know their
statistics that determines Q∗

1 to get the dominant contribution to Z.
The second term in Eq. (10.18) is a Gaussian noise with a two point correlation

function Cφ(x)φ(x)(s, t). The physical interpretation is the noisy signal each unit
receives due to the input from the other N units. Its autocorrelation function is given
by the summed autocorrelation functions of the output activities φ(xi(t)) weighted
by g2N−1, which incorporates the Gaussian statistics of the couplings. This intuitive
picture is shown in Fig. 10.3.

The interpretation of the noise can be appreciated by explicitly considering the
moment-generating functional of a Gaussian noise with a given autocorrelation
function C(t, t ′), which leads to the cumulant-generating functional ln Zζ [x̃] that
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Fig. 10.3 Interpretation of
the saddle point value Q∗

1
given by (10.17): The
summed covariances Cφφ

received by a neuron in the
network, weighted by the
synaptic couplings Jij , which
have Gaussian statistics with
variance g2N−1

appears in the exponent of (10.18) and has the form

ln Zζ [x̃] = ln

〈
exp

(∫
x̃(t) ζ(t) dt

)〉

= 1

2

∫ ∞

−∞

∫ ∞

−∞
x̃(t) C(t, t ′) x̃(t ′) dt dt ′

= 1

2
x̃T C x̃.

Note that the effective noise term only has a non-vanishing second cumulant.
This means the effective noise is Gaussian, as the cumulant-generating function
is quadratic. It couples pairs of time points that are correlated.

This is the starting point in [3, eq. (3)], stating that the effective mean-field
dynamics of the network is given by that of a single unit

(∂t + 1) x(t) = η(t) (10.19)

driven by a Gaussian noise η = ζ + dW
dt

with autocorrelation 〈η(t)η(s)〉 =
g2 Cφ(x)φ(x)(t, s) + Dδ(t − s). In the cited paper the white noise term ∝ D is
absent, though, because the authors consider a deterministic model.

We may either formally invert the operator −S(2) corresponding to the action
Eq. (10.18) to obtain the propagators of the system as in the case of the Ornstein–
Uhlenbeck processes in Chap. 8. Since we only need the propagator �xx(t, s) =
〈x(t)x(s)〉 =: Cxx(t, s) here, we may alternatively multiply Eq. (10.19) for time
points t and s and take the expectation value with respect to the noise η on both
sides, which leads to

(∂t + 1) (∂s + 1)Cxx(t, s) = g2 Cφ(x)φ(x)(t, s) + Dδ(t − s). (10.20)
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In the next section we will rewrite this equation into an equation of a particle in a
potential.

10.5 Stationary Statistics: Self-consistent Autocorrelation
as a Particle in a Potential

We are now interested in the stationary statistics of the system, which is entirely
given by the covariance function Cxx(t, s) =: c(t − s), because we have already
identified the effective noise as Gaussian. The inhomogeneity in (10.20) is then
also time-translation invariant, Cφ(x)φ(x)(t + τ, t) is only a function of τ . Therefore
the differential operator (∂t + 1) (∂s + 1) c(t − s), with τ = t − s, simplifies to
(−∂2

τ + 1) c(τ ) so we get

(−∂2
τ + 1) c(τ ) = g2 Cφ(x)φ(x)(t + τ, t) + D δ(τ). (10.21)

Once Eq. (10.21) is solved, we know the covariance function c(τ ) between two
time points τ apart as well as the variance c(0) =: c0. Since by the saddle point
approximation in Sect. 10.4 the expression (10.18) is the generating functional of a
Gaussian theory, the x are zero mean Gaussian random variables. We might call the
field x(t) =: x1 and x(t + τ ) =: x2, which follow the distribution

(x1, x2) ∼ N
(

0,

(
c(0) c(τ )

c(τ ) c(0)

))
.

Consequently the second moment completely determines the distribution. We can
therefore obtain Cφ(x)φ(x)(t, s) = g2fφ(c(τ ), c(0)) with

fu(c, c0) = 〈u(x1)u(x2)〉
(x1,x2)∼N

⎛
⎝0,

⎛
⎝ c0 c

c c0

⎞
⎠
⎞
⎠

(10.22)

=
∫∫

u

(√
c0 − c2

c0
z1 + c√

c0
z2

)
u

(√
c0 z2

)
Dz1Dz2 (10.23)

with the Gaussian integration measure Dz = exp(−z2/2)/
√

2π dz and for a
function u(x). Here, the two different arguments of u(x) are by construction
Gaussian with zero mean, variance c(0) = c0, and covariance c(τ ). Note that
Eq. (10.22) reduces to one-dimensional integrals for fu(c0, c0) = 〈u(x)2〉 and
fu(0, c0) = 〈u(x)〉2, where x has zero mean and variance c0.

We note that fu(c(τ ), c0) in Eq. (10.22) only depends on τ through c(τ ). We can
therefore obtain it from the “potential” g2f�(c(τ ), c0) by

Cφ(x)φ(x)(t + τ, t) =: ∂

∂c
g2f�(c(τ ), c0), (10.24)
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where � is the integral of φ, i.e. �(x) = ∫ x

0 φ(x) dx = ln cosh(x). The property
∂
∂c

f�(c, c0) = f�′(c(τ ), c0) is known as Price’s theorem [25] (see also Sect. 10.10
for a proof). Note that the representation in Eq. (10.22) differs from the one used in
[3, eq. (7)]. The expression used here is also valid for negative c(τ ) in contrast to
the original formulation. We can therefore express the differential equation for the
autocorrelation with the definition of the potential V

V (c; c0) := −1

2
c2 + g2f�(c(τ ), c0) − g2f�(0, c0), (10.25)

where the subtraction of the last constant term is an arbitrary choice that ensures
that V (0; c0) = 0. The equation of motion Eq. (10.21) therefore takes the form

∂2
τ c(τ ) = −V ′(c(τ ); c0) − D δ(τ), (10.26)

so it describes the motion of a particle in a (self-consistent) potential V with
derivative V ′ = ∂

∂c
V . The δ-distribution on the right-hand side causes a jump

in the velocity that changes from D
2 to −D

2 at τ = 0, because c is symmetric
(c(τ ) = c(−τ )) and hence ċ(τ ) = −ċ(−τ ) and moreover the term −V ′(c(τ ); c0)

does not contribute to the kink. The equation must be solved self-consistently, as the
initial value c0 determines the effective potential V (·, c0) via (10.25). The second
argument c0 indicates this dependence.

The gain function φ(x) = tanh(x) is shown in Fig. 10.4a, while Fig. 10.4b shows
the self-consistent potential for the noiseless case D = 0.

The potential is formed by the interplay of two opposing terms. The downward
bend is due to − 1

2c2. The term g2f�(c; c0) is bent upwards. We get an estimate
of this term from its derivative g2fφ(c, c0): Since φ(x) has unit slope at x = 0
(see Fig. 10.4a), for small amplitudes c0 the fluctuations are in the linear part of φ,

−2 −1 0 1 2
x

−1
0
1

a φ(x)
x

−2 −1 0 1 2
c

0
1

V
(c
)
(1
0−

1
)

b

Fig. 10.4 Effective potential for the noiseless case D = 0. (a) The gain function φ(x) = tanh(x)

close to the origin has unit slope. Consequently, the integral of the gain function �(x) = ln cosh(x)

close to origin has the same curvature as the parabola 1
2 x2. (b) Self-consistent potential for g = 2

and different values of c0 = 1.6, 1.8, 1.924, 2, 2.2 (from black to light gray). The horizontal gray
dotted line indicates the identical levels of initial and finial potential energy for the self-consistent
solution V (c0; c0) = 0, corresponding to the initial value that leads to a monotonously decreasing
autocovariance function that vanishes for τ → ∞
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so g2fφ(c, c0) � g2c for all c ≤ c0. Consequently, the potential g2f�(c, c0) =∫ c

0 g2fφ(c′, c0) dc′ c<c0�1� g2 1
2c2 has a positive curvature at c = 0.

For g < 1, the parabolic part dominates for all c0, so that the potential is bent
downwards and the only bounded solution in the noiseless case D = 0 of Eq. (10.26)
is the vanishing solution c(t) ≡ 0.

For D > 0, the particle may start at some point c0 > 0 and, due to its initial
velocity, reach the point c(∞) = 0. Any physically reasonable solution must be
bounded. In this setting, the only possibility is a solution that starts at a position
c0 > 0 with the same initial energy V (c0; c0) + E0

kin as the final potential energy
V (0; c0) = 0 at c = 0. The initial kinetic energy is given by the initial velocity

ċ(0+) = −D
2 as E

(0)
kin = 1

2 ċ(0+)2 = D2

8 . This condition ensures that the particle
starting at τ = 0 at the value c0 for τ → ∞ reaches the local maximum of the
potential at c = 0; the covariance function decays from c0 to zero.

For g > 1, the term g2f�(c; c0) can start to dominate the curvature close to
c � 0: the potential in Fig. 10.4b is bent upwards for small c0. For increasing
c0, the fluctuations successively reach the shallower parts of φ, hence the slope
of g2fφ(c, c0) diminishes, as does the curvature of its integral, g2f�(c; c0). With
increasing c0, the curvature of the potential at c = 0 therefore changes from positive
to negative.

In the intermediate regime, the potential assumes a double well shape. Several
solutions exist in this case. One can show that the only stable solution is the one that
decays to 0 for τ → ∞ [3,16]. In the presence of noise D > 0 this assertion is clear
due to the decorrelating effect of the noise, but it remains true also in the noiseless
case.

By the argument of energy conservation, the corresponding value c0 can be found
numerically as the root of

V (c0; c0) + E
(0)
kin

!= 0 (10.27)

E
(0)
kin = D2

8
,

for example with a simple bisectioning algorithm.
The corresponding shape of the autocovariance function then follows a straight

forward integration of the differential equation (10.26). Rewriting the second-order
differential equation into a coupled set of first-order equations, introducing ∂τ c =:
y, we get for τ > 0

∂τ

(
y(τ)

c(τ )

)
=
(

c(τ ) − g2fφ(c(τ ), c0)

y(τ )

)
(10.28)
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Fig. 10.5 Self-consistent autocovariance function from dynamic mean-field theory in the noise-
less case. Random network of 5000 Gaussian coupled units with g = 2 and vanishing noise D = 0.
(a) Activity of the first 10 units as function of time. (b) Self-consistent solution of covariance c(τ )

(black) and result from simulation (gray). The theoretical result is obtained by first solving (10.27)
for the initial value c0 and then integrating (10.28). (c) Self-consistent solution (black) as in (b) and
Cφφ(τ) = g2fφ(c(τ ), c0) given by (10.24) (gray). Duration of simulation T = 1000 time steps
with resolution h = 0.1 each. Integration of (10.1) by forward Euler method

with initial condition

(
y(0)

c(0)

)
=
(−D

2
c0

)
.

The solution of this equation in comparison to direct simulation is shown in
Fig. 10.5. Note that the covariance function of the input to a unit, Cφφ(τ) =
g2fφ(c(τ ), c0), bares strong similarities to the autocorrelation c, shown in
Fig. 10.5c: The suppressive effect of the non-linear, saturating gain function is
compensated by the variance of the connectivity g2 > 1, so that a self-consistent
solution is achieved.

10.6 Transition to Chaos

In this section, we will derive the largest Lyapunov exponent of the system that
allows us to assess the conditions under which the system undergoes a transition
into the chaotic regime. We will see that we can also conclude from this calculation
that the system, to leading order in N in the large N limit, is self-averaging: the
dominant contribution to the moment-generating function of the replicated system
in Eq. (10.7) indeed factorizes.
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10.7 Assessing Chaos by a Pair of Identical Systems

We now aim to study whether the dynamics is chaotic or not. To this end, we
consider a pair of identically prepared systems, in particular with identical coupling
matrix J and, for D > 0, also the same realization of the Gaussian noise. We
distinguish the dynamical variables xα of the two systems by superscripts α ∈
{1, 2}.

Let us briefly recall that the dynamical mean-field theory describes empiri-
cal population-averaged quantities for a single network realization (due to self-
averaging). Hence, for large N we expect that

1

N

N∑
i=1

xα
i (t)x

β
i (s) � cαβ(t, s)

holds for most network realizations. To study the stability of the dynamics with
respect to perturbations of the initial conditions we consider the population-
averaged (mean-)squared distance between the trajectories of the two copies of the
network:

1

N
||x1(t) − x2(t)||2 = 1

N

N∑
i=1

(
x1
i (t) − x2

i (t)
)2

(10.29)

= 1

N

N∑
i=1

(
x1
i (t)

)2 + 1

N

N∑
i=1

(
x2
i (t)
)2 − 2

N

N∑
i=1

x1
i (t)x2

i (t)

� c11(t, t) + c22(t, t) − 2c12(t, t) .

This idea has also been employed in [26]. Therefore, we define the mean-field mean-
squared distance between the two copies:

d(t, s) := c11(t, s) + c22(t, s) − c12(t, s) − c21(t, s) , (10.30)

which gives for equal time arguments the actual mean-squared distance d(t) :=
d(t, t) . Our goal is to find the temporal evolution of d(t, s) . The time evolution
of a pair of systems in the chaotic regime with slightly different initial conditions
is shown in Fig. 10.6. Although the initial displacement between the two systems
is drawn independently for each of the three shown trials, the divergences of d(t)

have a similar form, which for large times is dominated by one largest Lyapunov
exponent. The aim of the remainder of this section is to find this rate of divergence.

To derive an equation of motion for d(t, s) it is again convenient to define a
generating functional that captures the joint statistics of two systems and in addition
allows averaging over the quenched disorder [see also 24, Appendix 23, last
remark].
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Fig. 10.6 Chaotic evolution. (a) Dynamics of two systems starting at similar initial conditions
for chaotic case with g = 2, N = 5000, D = 0.01. Trajectories of three units shown for the
unperturbed (black) and the perturbed system (gray). (b) Absolute average squared distance d(t)

given by (10.29) of the two systems. (c) Difference x1 − x2 for the first three units. The second
system is reset to the state of the first system plus a small random displacement as soon as d(t) > 2.
Other parameters as in Fig. 10.5

The generating functional is defined in analogy to the single system (10.4)

Z2[{jα, j̃α}α∈{1,2}](J)

= �2
α=1

{ ∫
Dxα

∫
Dx̃α exp

(
x̃αT((∂t + 1) xα −

∑
j

Jφ(xα)
)+ jαTxα + j̃αTx̃α

)}

× exp
(D

2
(x̃1 + x̃2)T(x̃1 + x̃2)

)
, (10.31)

where the last term is the moment-generating functional due to the white noise that
is common to both subsystems. We note that the coupling matrix J is the same in
both subsystems as well. Using the notation analogous to (10.4) and collecting the
terms that affect each individual subsystem in the first, the common term in the
second line, we get

Z2[{jα, j̃α}α∈{1,2}](J)

= �2
α=1

{ ∫
Dxα

∫
Dx̃α exp

(
S0[xα, x̃α] − x̃αTJφ

(
xα
)+ jαTxα + j̃αTx̃α

)}

× exp
(
Dx̃1Tx̃2

)
. (10.32)
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Here the term in the last line appears due to the mixed product of the response fields
in Eq. (10.31).

We will now perform the average over realizations of J, as in Sect. 10.4. We
therefore need to evaluate the Gaussian integral

∫
dJijN

(
0,

g2

N
, Jij

)
exp

(
−Jij

2∑
α=1

x̃αT
i φ(xα

j )

)

= exp

(
g2

2N

2∑
α=1

(
x̃αT
i φ(xα

j )
)2
)

exp

(
g2

N
x̃1T
i φ(x1

j ) x̃2T
i φ(x2

j )

)
. (10.33)

Similar as for the Gaussian integral over the common noises that gave rise to the
coupling term between the two systems in the second line of Eq. (10.32), we here
obtain a coupling term between the two systems, in addition to the terms that only
include variables of a single subsystem in the second last line. Note that the two
coupling terms are different in nature. The first, due to common noise, represents
common temporal fluctuations injected into both systems. The second is static in
its nature, as it arises from the two systems having the same coupling J in each
of their realizations that enter the expectation value. The terms that only affect a
single subsystem are identical to those in Eq. (10.11). We treat these terms as before
and here concentrate on the mixed terms, which we rewrite (including the

∑
i 
=j in

Eq. (10.32) and using our definition x̃αT
i φ(xα

j ) = ∫ dt x̃α
i (t)φ(xα

j (t)) dt) as

exp
(g2

N

∑
i 
=j

x̃1T
i φ(x1

j ) x̃2T
i φ(x2

j )
)

(10.34)

= exp
( ∫∫ ∑

i

x̃1
i (s)x̃2

i (t)
g2

N

∑
j

φ(x1
j (s)) φ(x2

j (t))

︸ ︷︷ ︸
=:T1(s,t)

ds dt
)

+ O(N−1),

where we included the self-coupling term i = j , which is only a subleading
correction of order N−1.

We now follow the steps in Sect. 10.4 and introduce three pairs of auxiliary
variables. The pairs Qα

1 ,Qα
2 are defined as before in Eqs. (10.12) and (10.13), but

for each subsystem, while the pair T1, T2 decouples the mixed term Eq. (10.34) by
defining

T1(s, t) := g2

N

∑
j

φ(x1
j (s)) φ(x2

j (t)),

as indicated by the curly brace in Eq. (10.34).
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Taken together, this transforms the generating functional (10.32) averaged over
the couplings as

Z̄2[{jα, j̃α}α∈{1,2}] := 〈Z2[{jα, j̃α}α∈{1,2}](J)〉J (10.35)

= �2
α=1

{∫
DQα

1

∫
DQα

2

}∫
DT1

×
∫

DT2 exp
(
�[{Qα

1 ,Qα
2 }α∈{1,2}, T1, T2]

)
,

where

�[{Qα
1 ,Qα

2 }α∈{1,2}, T1, T2]

:= −
2∑

α=1

QαT
1 Qα

2 − T T
1 T2 + ln Z12[{Qα

1 ,Qα
2 }α∈{1,2}, T1, T2]

and

Z12[{Qα
1 ,Qα

2 }α∈{1,2}, T1, T2]

= �2
α=1

{∫
Dxα

∫
Dx̃α

× exp
(
S0[xα, x̃α] + jαTxα + j̃αTx̃α + 1

2
x̃αTQα

1 x̃α

+g2

N
φ(xα)TQα

2 φ(xα)
)}

× exp
(

x̃1T (T1 + D) x̃2 + g2

N
φ(x1)TT2φ(x2)

)
.

We now determine, for vanishing sources, the fields Qα
1 , Qα

2 , T1, T2 at which the

contribution to the integral is maximal by requesting δ�
δQα

1,2
= δ�

δT1,2

!= 0 for the

exponent � of (10.35). Here again the term ln Z12 plays the role of a cumulant-
generating function and the fields Qα

1 ,Qα
2 , T1, T2 play the role of sources, each

bringing down the respective factor they multiply. We denote the expectation value
with respect to this functional as 〈◦〉Q∗,T ∗ and obtain the self-consistency equations

Qα∗
1 (s, t) = 1

Z12

δZ12

δQα
2 (s, t)

= g2

N

∑
j

〈φ(xα
j )φ(xα

j )〉Q∗,T ∗ (10.36)

Qα∗
2 (s, t) = 0
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T ∗
1 (s, t) = 1

Z12

δZ12

δT2(s, t)
= g2

N

∑
j

〈φ(x1
j )φ(x2

j )〉Q∗,T ∗

T ∗
2 (s, t) = 0.

The generating functional at the saddle point is therefore

Z̄∗
2 [{jα, j̃α}α∈{1,2}]

=
∫∫

�2
α=1DxαDx̃α exp

( 2∑
α=1

S0[xα, x̃α] + jαTxα + j̃αTx̃α + 1

2
x̃αTQα∗

1 x̃α
)

× exp
(

x̃αT (T ∗
1 + D

)
x̃β
)

. (10.37)

We make the following observations:

1. The two subsystems α = 1, 2 in the first line of Eq. (10.37) have the same form as
in (10.18). This has been expected, because the absence of any physical coupling
between the two systems implies that the marginal statistics of the activity in one
system cannot be affected by the mere presence of the second, hence also their
saddle points Qα

1,2 must be the same as in (10.18).
2. The entire action is symmetric with respect to interchange of any pair of unit

indices. So we have reduced the system of 2N units to a system of 2 units.
3. If the term in the second line of (10.37) was absent, the statistics in the

two systems would be independent. Two sources, however, contribute to the
correlations between the systems: The common Gaussian white noise that gave
rise to the term ∝ D and the non-white Gaussian noise due to a non-zero value
of the auxiliary field T ∗

1 (s, t).
4. Only products of pairs of fields appear in (10.37), so that the statistics of the xα

is Gaussian.

As for the single system, we can express the joint system by a pair of dynamic
equations

(∂t + 1) xα(t) = ηα(t) α ∈ {1, 2} (10.38)

together with a set of self-consistency equations for the statistics of the noises ηα

following from Eq. (10.36) as

〈ηα(s) ηβ(t)〉 = Dδ(t − s) + g2 〈φ(xα(s))φ(xβ(t))〉. (10.39)

Obviously, this set of equations (10.38) and (10.39) marginally for each subsystem
admits the same solution as determined in Sect. 10.5. Moreover, the joint system
therefore also possesses the fixed point x1(t) ≡ x2(t), where the activities in the
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two subsystems are identical, i.e. characterized by c12(t, s) = c11(t, s) = c22(t, s)

and consequently vanishing Euclidean distance d(t) ≡ 0 ∀t by Eq. (10.30).
We will now investigate if this fixed point is stable. If it is, this implies that

any perturbation of the system will relax such that the two subsystems are again
perfectly correlated. If it is unstable, the distance between the two systems may
increase, indicating chaotic dynamics.

We already know that the autocorrelation functions in the subsystems are stable
and each obeys the equation of motion (10.26). We could use the formal approach,
writing the Gaussian action as a quadratic form and determine the correlation and
response functions as the inverse, or Green’s function, of this bi-linear form. Here,
instead we employ a simpler approach: we multiply Eq. (10.38) for α = 1 and
α = 2 and take the expectation value on both sides, which leads to

(∂t + 1) (∂s + 1) 〈xα(t)xβ(s)〉 = 〈ηα(t)ηβ(s)〉,

so we get for α, β ∈ {1, 2}

(∂t + 1) (∂s + 1) cαβ(t, s) = Dδ(t − s) + g2Fφ

(
cαβ(t, s), cαα(t, t), cββ(s, s)

)
,

(10.40)

where the function Fφ is defined as the Gaussian expectation value

Fφ(c12, c1, c2) :=
〈
φ(x1)φ(x2)

〉

for the bi-variate Gaussian

(
x1

x2

)
∼ N2

(
0,

(
c1 c12

c12 c2

))
.

First, we observe that the equations for the autocorrelation functions cαα(t, s)

decouple and can each be solved separately, leading to the same Eq. (10.26) as
before. As noted earlier, this formal result could have been anticipated, because the
marginal statistics of each subsystem cannot be affected by the mere presence of the
respective other system. Their solutions

c11(s, t) =c22(s, t) = c(t − s)

then provide the “background,” i.e. the second and third argument of the function
Fφ on the right-hand side, for the equation for the crosscorrelation function between
the two copies. Hence it remains to determine the equation of motion for c12(t, s).

We first determine the stationary solution c12(t, s) = k(t − s). We see
immediately that k(τ ) obeys the same equation of motion as c(τ ), so k(τ ) = c(τ ).
The distance (10.30) for this solution thus vanishes. Let us now study the stability
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of this solution. We hence need to expand c12 around the stationary solution

c12(t, s) = c(t − s) + ε k(1)(t, s) , ε � 1 .

We expand the right-hand side of equation (10.40) into a Taylor series using Price’s
theorem and (10.22)

Fφ

(
c12(t, s), c0, c0

)
= fφ

(
c12(t, s), c0

)

= fφ (c(t − s), c0) + ε fφ′ (c(t − s), c0) k(1)(t, s) + O(ε2).

Inserted into (10.40) and using that c solves the lowest order equation, we get the
linear equation of motion for the first-order deflection

(∂t + 1) (∂s + 1) k(1)(t, s) = g2fφ′ (c(t − s), c0) k(1)(t, s). (10.41)

In the next section we will determine the growth rate of k(1) and hence, by (10.30)

d(t) = c11(t, t)︸ ︷︷ ︸
c0

+ c22(s, s)︸ ︷︷ ︸
c0

−c12(t, t) − c21(t, t)︸ ︷︷ ︸
−2c0−2ε k(1)(t,t )

= −2ε k(1)(t, t) (10.42)

the growth rate of the distance between the two subsystems. The negative sign makes
sense, since we expect in the chaotic state that c12(t, s) declines for large t, s → ∞,
so k(1) must be of opposite sign than c > 0.

10.8 Schrödinger Equation for the Maximum Lyapunov
Exponent

We here want to reformulate the equation for the variation of the cross-system
correlation given by Eq. (10.41) into a Schrödinger equation, as in the original work
[3, eq. 10].

First, noting that Cφ′φ′(t, s) = fφ′ (c(t − s), c0) is time-translation invariant, it
is advantageous to introduce the coordinates T = t + s and τ = t − s and write
the covariance k(1)(t, s) as k(T , τ ) with k(1)(t, s) = k(t + s, t − s). The differential
operator (∂t + 1) (∂s + 1) with the chain rule ∂t → ∂T + ∂τ and ∂s → ∂T − ∂τ in

the new coordinates is (∂T + 1)2 − ∂2
τ . A separation ansatz k(T , τ ) = e

1
2 κT ψ(τ)

then yields the eigenvalue equation

(κ

2
+ 1
)2

ψ(τ) − ∂2
τ ψ(τ) = g2fφ′ (c(τ ), c0)ψ(τ)
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for the growth rates κ of d(t) = −2k(1)(t, t) = −2k(2t, 0). We can express the
right-hand side by the second derivative of the potential (10.25) V (c(τ ); c0) so that
with

V ′′(c(τ ); c0) = −1 + g2fφ′ (c(τ ), c0) (10.43)

we get the time-independent Schrödinger equation

(
−∂2

τ − V ′′(c(τ ); c0)
)

ψ(τ) =
(

1 −
(κ

2
+ 1
)2
)

︸ ︷︷ ︸
=:E

ψ(τ). (10.44)

The eigenvalues (“energies”) En determine the exponential growth rates κn the
solutions k(2t, 0) = eκnt ψn(0) at τ = 0 with

κ±
n = 2

(
−1 ±√1 − En

)
. (10.45)

We can therefore determine the growth rate of the mean-square distance of the
two subsystems introduced in Sect. 10.7 by (10.42). The fastest growing mode
of the distance is hence given by the ground state energy E0 and the plus sign in
Eq. (10.45). The deflection between the two subsystems therefore grows with the
rate

λmax = 1

2
κ+

0 (10.46)

= −1 +√1 − E0,

where the factor 1/2 in the first line is due to d being the squared distance, hence
the length

√
d grows with half the exponent as d .

“Energy conservation” (10.27) determines c0 also in the case of non-zero noise
D 
= 0, as shown in Fig. 10.7a. The autocovariance function obtained from the
solution of Eq. (10.28) agrees well to the direct simulation, shown in Fig. 10.7b.
The quantum potential appearing in Eq. (10.44) is graphed in Fig. 10.7c.

10.9 Condition for Transition to Chaos

We can construct an eigensolution of Eq. (10.44) from Eq. (10.26). First we note that
for D 
= 0, c has a kink at τ = 0. This can be seen by integrating equation (10.26)
from −ε to ε, which yields

lim
ε→0

∫ ε

−ε

∂2
τ cdτ = ċ(0+) − ċ(0−)

= D.
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Fig. 10.7 Dependence of the self-consistent solution on the noise level D. (a) Potential that
determines the self-consistent solution of the autocorrelation function (10.25). Noise amplitude

D > 0 corresponds to an initial kinetic energy Ekin = D2

8 . The initial value c0 is determined by the
condition V (c0; c0) + Ekin = 0, so that the “particle” starting at c(0) = c0 has just enough energy
to reach the peak of the potential at c(τ → ∞) = 0. In the noiseless case, the potential at the initial
position c(0) = c0 must be equal to the potential for τ → ∞, i.e. V (c0; c0) = V (0) = 0, indicated
by horizontal dashed line and the corresponding potential (black). (b) Resulting self-consistent
autocorrelation functions given by (10.28). The kink at zero time lag ċ(0−) − ċ(0+) = D

2 is
indicated by the tangential dotted lines. In the noiseless case the slope vanishes (horizontal dotted
line). Simulation results shown as light gray underlying curves. (c) Quantum mechanical potential
appearing in the Schrödinger (10.44) with dotted tangential lines at τ = ±0. Horizontal dotted line
indicates the vanishing slope in the noiseless case. Other parameters as in Fig. 10.4

Since c(τ ) = c(−τ ) is an even function it follows that ċ(0+) = −ċ(0−) = −D
2 .

For τ 
= 0 we can differentiate equation (10.26) with respect to time τ to obtain

∂τ ∂
2
τ c(τ ) = ∂2

τ ċ(τ )

= −∂τV
′(c(τ )) = −V ′′(c(τ )) ċ(τ ).

Comparing the right-hand side expressions shows that
(
∂2
τ + V ′′(c(τ ))

)
ċ(τ ) = 0,

so ċ is an eigensolution for eigenvalue En = 0 of Eq. (10.44).
Let us first study the case of vanishing noise D = 0 as in [3]. The solution ċ then

exists for all τ . Since c is a symmetric function, �1 = ċ has a node at τ = 0. The
quantum potential, however, has a single minimum at τ = 0. The ground state �0
of such a quantum potential is always a function with modulus that is maximal at
τ = 0 and thus no nodes. Therefore, the state �0 has even lower energy than �1,
i.e. E0 < 0. This, in turn, indicates a positive Lyapunov exponent λmax according to
Eq. (10.46). This is the original argument in [3], showing that at g = 1 a transition
from a silent to a chaotic state takes place.

Our aim is to find the parameter values for which the transition to the chaotic state
takes place in the presence of noise. We know that the transition takes place if the
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eigenvalue of the ground state of the Schrödinger equation is zero (cf. (10.46)). We
can therefore explicitly try to find a solution of Eq. (10.44) for eigenenergy En = 0,
i.e. we seek the homogeneous solution that satisfies all boundary conditions, which
are the continuity of the solution and its first and second derivative. We already know
that ċ(τ ) is one homogeneous solution of Eq. (10.44) for positive and for negative
τ . For D 
= 0, we can construct a continuous solution from the two branches by
defining

y1(τ ) =
{

ċ(τ ) τ ≥ 0

−ċ(τ ) τ < 0
, (10.47)

which is symmetric, consistent with the search for the ground state. In general, y1
does not solve the Schrödinger equation, because the derivative at τ = 0 is not
necessarily continuous, since by (10.21) ∂τ y1(0+)−∂τy1(0−) = c̈(0+)+ c̈(0−) =
2(c0 − g2fφ(c0; c0)). Therefore y1 is only an admissible solution, if the right hand
side vanishes. As we vary the parameters of the network, say g, this right-hand
side may vanish. At the point at which this happens we know that (10.47) is indeed
the ground state of the Schrödinger equation with vanishing energy and thus, by
(10.46), this very value of g must be right at the change between negative and
positive Lyapunov exponent. The criterion for the transition to the chaotic state is
hence

0 = ∂2
τ c(0±) = c0 − g2fφ (c0, c0) (10.48)

= −V ′(c0; c0).

The latter condition therefore shows that the curvature of the autocorrelation
function at τ = 0± (infinitesimally left or right of zero) vanishes at the transition.
In the picture of the motion of the particle in the potential the vanishing acceleration
at τ = 0 amounts to a potential with a flat tangent at c0.

A necessary condition is the minimum of the potential

V ′′(c0, c0) < 0,

because the ground state energy cannot be smaller than the potential, as it is the
sum of potential energy and kinetic energy. With Eq. (10.43) the latter condition
translates to

1 ≤ g2〈φ′(x)2〉.

The latter expression is the spectral radius of the Jacobian Jij φ
′ of the dynamical

equation (10.1) exceeding unity: the point where linear stability is lost.
The criterion for the transition can be understood intuitively. The additive noise

increases the peak of the autocorrelation at τ = 0. In the large noise limit, the
autocorrelation decays as e−|τ |, so the curvature is positive. The decay of the
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Fig. 10.8 Transition to chaos. (a) Upper part of vertical axis: Maximum Lyapunov exponent
λmax (10.46) as a function of the coupling strength g for different input amplitude levels.
Mean-field prediction (solid curve) and simulation (diamonds). Comparison to the upper bound
−1 + g

√〈φ′(x)2〉 (dashed) for
√

D/2 = σ = 0.5 in inset. Zero crossings marked with dots.
Lower part of vertical axis: Ground state energy E0 as a function of g. (b) Phase diagram with
transition curve (solid red curve) obtained from (10.48) and necessary condition (1 = g2〈φ′(x)2〉,
gray dashed curve). Dots correspond to zero crossings in inset in (a). Disk of eigenvalues of the
Jacobian matrix for

√
D/2 = σ = 0.8 and g = 1.25 (lower) and g = 2.0 (upper) centered at

−1 in the complex plane (gray). Radius ρ = g
√〈φ′(x)2〉 from random matrix theory (black).

Vertical line at zero. (c) Asymptotic decay time τ∞ of autocorrelation function. Vertical dashed
lines mark the transition to chaos. Color code as in (a). Network size of simulations N = 5000.
Figure reproduced from [14]

autocorrelation is a consequence of the uncorrelated external input. In contrast, in
the noiseless case, the autocorrelation has a flat tangent at τ = 0, so the curvature
is negative. The only reason for its decay is the decorrelation due to the chaotic
dynamics. The transition between these two forces of decorrelation hence takes
place at the point at which the curvature changes sign, from dominance of the
external sources to dominance of the intrinsically generated fluctuations. The phase
diagram of the network is illustrated in Fig. 10.8. For a more detailed discussion
please see [14].

A closely related calculation shows that the condition for the transition to chaos
in the absence of noise is identical to the condition for a vanishing coupling between
replicas. Therefore, in the chaotic regime the system is, to leading order in N , also
self-averaging. This argument can be extended to the case with noise D 
= 0. One
finds that also here the only physically admissible solution for the field coupling the
replicas is one that vanishes (see exercises).
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10.10 Problems

a) Networkwith Sparse Connectivity I

Assume the connectivity in a random network is given by Jij
i.i.d.∼ J0√

N
B(p), with

B(p) a random number following the Bernoulli distribution with probability p, i.e.
an Erdős–Rényi network with connection probability p and non-zero amplitudes
J0√
N

. In addition, assume that the network dynamics is given by

dx(t) + x(t) dt = Jφ(x(t)) dt + dW(t) + h dt (10.49)

instead of Eq. (10.1), where h = const. is a constant input current into the network.
Perform the corresponding disorder-average Eq. (10.10) as in the lecture notes and
determine the terms appearing in the disorder-averaged action. Make use of the
linear appearance of Jij in the exponent to identify the cumulant-generating function
of the Bernoulli variable, as calculated in the exercises for Chap. 2. Argue with the
scaling Jij ∝ J0√

N
how the term corresponding to the n-th cumulant κn scales with

N . Only keep the leading order terms stemming from the first κ1 and second κ2
cumulant of Jij (4 points). Introduce auxiliary fields for all terms that contain sums
over N variables (i.e., R1(t) ∝ ∑

j φ(xj (t)) and Q1(s, t) ∝ ∑j φ(xj (s))φ(xj (t))

with appropriately chosen prefactors) and introduce one additional auxiliary field
each, analogous to Eq. (10.13), to enforce the two constraints (4 points).

b) Derive Price’s Theorem

Derive Price’s theorem, which, for the function equation (10.22), takes the form

∂

∂c
fu(c, c0) =fu′ (c, c0) (10.50)

for a function u(x) whose Fourier transform exists, i.e. u(x) = 1
2π

∫
U(ω) eiωxdω.

The proof follows by inserting the Fourier representation and calculating the left-
hand side of equation (10.50) (4 points).

c) Network with Sparse Connectivity II

Determine the saddle point solution for the auxiliary fields introduced in the
previous exercise, analogous to Eq. (10.15) (2 points).

You may compare your result to [13, 27].

1. How do the mean-field equations for the auxiliary fields change in this case?
2. Does your derivation depend on the point-symmetry of the gain function?
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3. What does the effective one-dimensional equation of motion look like?
4. Using the latter, derive the equations for the mean 〈x〉 and the covariance function

〈δx(t + τ )δx(t)〉 (with δx(t) = x(t) − 〈x〉) (You may look at eqs. (5) and (6) of
[27]).

5. What is the solution for 〈x〉 in a purely excitatory network, i.e. J0 > 0 in the
large N limit and finite h, neglecting fluctuations?

6. Argue, how the mean activity in the large N limit for J0 < 0 stabilizes to reach
a balance between the external input h > 0 and the local feedback through the
network, again neglecting fluctuations (4 points).

d) Replica Calculation, Self-averaging, Chaos, and Telepathy

We want to give an explanation for telepathy in this exercise, the apparent
communication between living beings despite any physical interaction between
them. As a side effect, we will see how to do a replica calculation and show that
the considered random networks are indeed self-averaging. We will also see that the
transition to chaos in networks without noise is closely related to the self-averaging
property.

First assume that the statistics of the activity of x, the degrees of freedom of a
system (e.g., a brain) is described by moment-generating functional that depends on
a parameter J as

Z[j ](J ).

Assume that a measurable observable of the system can be written as a functional
O[x].

We now consider an ensemble of systems, where J is drawn randomly in each
realization. How can one express the expectation value of

〈〈O[x]〉x
〉
J in terms of

Z̄[j ] := 〈Z[j ](J )〉J ?
The idea of a replica calculation is to consider an ensemble that is composed

of pairs of completely identical systems that in particular have the same J in each
realization.

How can one express the variability

〈δO2〉J :=〈〈O[x]〉2
x(J )〉J − 〈〈O[x]〉x(J )〉2

J (10.51)

of the observable O across realizations of J by considering the moment-generating
functional for a pair of replicas

Z̄2[j (1), j (2)] : = 〈Z[j (1)](J ) Z[j (2)](J )〉J . (10.52)



124 10 Dynamic Mean-Field Theory for Random Networks

Show that the variability vanishes for any observable if the pairwise averaged
generating functional factorizes

Z̄2[j (1), j (2)] = Z̄[j (1)] Z̄[j (2)] to be shown→ 〈δO2〉J ≡ 0 ∀O.

(4 points).
Now assume for concreteness that each of the two brains is represented by

a random network given by (10.1) with connectivity (10.2). We assume that the
Wiener increments dξ(t) are drawn independently between the two networks, unlike
in the calculation of the Lyapunov exponent. We would like to calculate (10.52)
analogous to (10.35). How does Z2 differ from (10.35)? (2 points).

With this modification, follow the analogous steps that lead to (10.35). Now
perform the saddle point approximation corresponding to (10.36) to obtain the
generating functional at the saddle point, corresponding to (10.37). (You do not need
to write down all intermediate steps; rather only follow through the steps to see how
the difference between Z̄2[j (1), j (2)], given by (10.52), and Z̄[{jα, j̃α}α∈{1,2}], given
by (10.35), affects the final result). Which term in the action could explain telepathy
between the systems? (4 points).

Read off the effective pair of equations of motion, corresponding to (10.38) as
well as the self-consistency equation for the noises, corresponding to (10.39) from
the generating functional at the saddle point (2 points).

Compare the setup used here (same realization for the connectivity, noise with
same statistics, but independently drawn) with the setup used for the study of chaos
(also here same realization for the connectivity, but in addition the same noise
realization). Would it make sense to ask for chaos in the former one? Why (not)?

For the absence of driving noise, D = 0, you should now be able to draw the
conclusion that the condition for the transition to chaos is identical to the system
being self-averaging; to leading order in N−1, the variability of any observable, as
quantified by (10.51), vanishes (2 points).

Now consider the case D > 0. Write down the equation of motion, corresponding
to (10.40), for the covariance functions cαβ(t − s) = 〈xα(t)xβ(s)〉. Why is the
solution in each replicon cαα identical to the solution in a single system, described
by (10.26)? (2 points).

Now consider the covariance c12(τ ) and write its differential equation in the form
of a motion of a particle in a potential. Show that the potential V defined by (10.25)
appears on the right-hand side. Use energy considerations of the particle to argue
that c12 ≡ 0 is an admissible solution. Assuming this solution, conclude from the
previous results that the system with noise is self-averaging to leading order in N (2
points).

To show that this is the only solution one would need to analyze the stability of
the other possibilities (not part of this exercise).
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e) Langevin Dynamics with Random Feedback

Consider an effective description of a single population network with feedback J

whose activity x(t) follows a Langevin equation

dx + x dt = J x dt + dW, (10.53)

in Ito-formulation with 〈dW 2(t)〉 = Ddt a Wiener increment and J ∈ R. It
may represent the activity of a neuronal population which has an exponentially
deactivating response (left- hand side) and a feedback due to the term Jx.

1. What is the action of the system and the moment-generating functional ZJ (j)

(Here the subscript denotes the dependence on the parameter J .) following from
Sect. 7.5?

2. Determine the propagators of the system in the Fourier domain, using the results
from Sect. 8.2. What happens at the point J = 1 (argue by Eq. (10.53)) ?
What is the response of the system to a small input at that point (argue by the
corresponding propagator �xx̃(ω))?

3. Now assume the self-coupling J to follow a Gaussian distribution J ∼ N(μ, σ 2).
We would like to describe the ensemble of these systems by
Z̄(j) = 〈ZJ (j)〉J∼N(μ,σ 2). Calculate the moment-generating functional for the
ensemble.

4. What is the action that effectively describes the ensemble? Show that an
interaction term arises that is non-local in time. How do the propagators change
and what are the interaction vertices?

5. Assuming small noise amplitude σ � μ, determine the first order correction
to the first and second cumulants of the field x. You may find the Cauchy’s
differentiation formula [28, 1.9.31] f (n)(a) = n!

2πi

∮
γ

f (z)

(z−a)n+1 dz useful in
obtaining the correction to the covariance in time domain.
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11Vertex-Generating Function

Abstract

We have seen in the previous sections that the statistics of a system can be
either described by the moment-generating function Z(j) or, more effectively,
by the cumulant-generating function W(j) = ln Z(j). The decomposition of
the action S into a quadratic part − 1

2xTAx and the remaining terms collected
in V (x) allowed us to derive graphical rules in terms of Feynman diagrams to
calculate the cumulants or moments of the variables in an effective way (see
Chap. 5). We saw that the expansion of the cumulant-generating function W(j)

in the general case S0(x) + εV (x) is composed of connected components only.
In the particular case of a decomposition as S(x) = − 1

2xTAx + εV (x), we
implicitly assume a quadratic approximation around the value x = 0. If the
interacting part V (x) and the external source j are small compared to the free
theory, this is the natural choice. We will here derive a method to systematically
expand fluctuations around the true mean value in the case that the interaction is
strong, so that the dominant point of activity is in general far away from zero.
Let us begin with an example to illustrate the situation.

11.1 Motivating Example for the Expansion Around
a Non-vanishing Mean Value

Let us study the fluctuating activity in a network of N neurons which obeys the set
of coupled equations

xi =
∑
j

Jij φ(xj ) + μi + ξi (11.1)

ξi ∼ N(0,Di) 〈ξi ξj 〉 = δij Di,

φ(x) = tanh(x − θ).

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
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Here the N units are coupled by the synaptic weights Jij from unit j to unit i.
We may think about xi being the membrane potential of the neuron and φ(xi) its
firing rate, which is a non-linear function φ of the membrane potential. The non-
linearity has to obey certain properties. For example, it should typically saturate at
high rates, mimicking the inability of neurons to fire in rapid succession. The choice
of φ(x) = tanh(x) is common in the field of artificial neuronal networks. The term
μi represents an additional input to the i-th neuron and ξi is a centered Gaussian
noise causing fluctuations within the network.

We may be interested in the statistics of the activity that arises due to the
interplay among the units. For illustrative purposes, let us for the moment assume
a completely homogeneous setting, where Jij = J0

N
∀ i, j and μi = μ as well

as Di = D ∀ i. Since the Gaussian fluctuations are centered, we may obtain a
rough approximation by initially just ignoring their presence, leading us to a set of
N identical equations

xi = J0

N

N∑
j=1

φ(xj ) + μ.

Due to the symmetry, we hence expect a homogeneous solution xi ≡ x ∀ i, which
fulfills the equation

x∗ = J0 φ(x∗) + μ. (11.2)

There may, of course, also be asymmetric solutions to this equation, those that break
the symmetry of the problem.

We note that even though we assumed the synaptic couplings to diminish as
N−1, the input from the other units cannot be neglected compared to the mean
input μ. So an approximation around the solution with vanishing mean 〈x〉 = 0
seems inadaquate. Rather we would like to approximate the statistics around the
mean value x∗ that is given by the self-consistent solution of (11.2), illustrated in
Fig. 11.1.

To take fluctuations into account, which we assume to be small, we make the
ansatz x = x∗ + δx and approximate

φ(x) = φ(x∗) + φ′(x∗) δx,

which therefore satisfies the equation

δx = J0φ
′(x∗) δx + ξ, (11.3)

ξ ∼ N(0,D).
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Fig. 11.1 Self-consistent solution of the mean activity in a single population network. (a) Tree-
level approximation of the self-consistent activity given by intersection of left-hand side of (11.2)
(thin black line with unit slope) and the right-hand side; different gray levels indicate thresholds θ ∈
[−3, 4] in φ(x) = tanh(x − θ) from black to light gray. Black dots mark the points of intersection,
yielding the self-consistent tree-level or mean-field approximation neglecting fluctuations. (b) Self-
consistent solution as function of the activation threshold θ . Black dotted curve: Exact numerical
solution; mid gray: Tree-level (mean field) approximation neglecting fluctuations, as illustrated
in a and given by (11.2); light gray: one-loop correction given by (11.5), including fluctuation
corrections. (c) Variance of x. Exact numerical value (black) and mean-field approximation given
by (11.4). Parameters: Mean input μ = 1, self-coupling J0 = −1, variance of noise D = 1

Since Eq. (11.3) is linearly related to the noise, the statistics of δx is

δx ∼ N(0,
D

|1 − J0φ′(x∗)|2︸ ︷︷ ︸
=:D̄

). (11.4)

We see that the denominator is only well-defined, if J0φ
′(x∗) 
= 1. Otherwise the

fluctuations will diverge and we have a critical point. Moreover, we here assume
that the graph of J0φ cuts the identity line with an angle smaller 45◦, so that
the fluctuations of δx are positively correlated to those of ξ—they are related
by a positive factor. If we had a time-dependent dynamics, the other case would
correspond to an unstable fixed point.

Approximating the activity in this Gaussian manner, we get a correction to the
mean activity as well: Taking the expectation value on both sides of Eq. (11.1), and
approximating the fluctuations of x by Eq. (11.4) by expanding the non-linearity to
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the next order we get

x∗ = 〈x∗ + δx〉 = μ + J0φ(x∗) + J0φ
′(x∗) 〈δx〉︸︷︷︸

=0

+J0
φ′′(x∗)

2! 〈δx2〉︸ ︷︷ ︸
=D̄

+O(δx3),

x∗ − J0φ(x∗) − μ = J0
φ′′(x∗)

2!
D

|1 − J0φ′(x∗)|2 + O(δx3). (11.5)

So the left-hand side does not vanish anymore, as it did at lowest order; instead
we get a fluctuation correction that depends on the point x∗around which we
expanded. So solving the latter equation for x∗, we implicitly include the fluctuation
corrections of the chosen order: Note that the variance of the fluctuations, by (11.4),
depends on the point x∗ around which we expand. We see from (11.5) that we
get a correction to the mean with the same sign as the curvature φ′′, as intuitively
expected due to the asymmetric “deformation” of the fluctuations by φ. The different
approximations (11.2) and (11.5) are illustrated in Fig. 11.1.

The analysis we performed here is ad hoc and limited to studying the Gaussian
fluctuations around the fixed point. In the following we would like to generalize
this approach to non-Gaussian corrections and to a diagrammatic treatment of the
correction terms.

11.2 Legendre Transform and Definition of the
Vertex-Generating Function �

In the previous example in Sect. 11.1 we aimed at a self-consistent expansion
around the true mean value x∗ to obtain corrections to the expectation value due
to fluctuations. The strategy was to first perform an expansion around an arbitrarily
chosen point x∗. Then to calculate fluctuation corrections and only as a final step
we solve the resulting equation for the self-consistent value of x∗ that is equal to the
mean. We will follow exactly the same line of thoughts here, just formulating the
problem with the help of an action, because we ultimately aim at a diagrammatic
formulation of the procedure. Indeed, the problem from the last section can be
formulated in terms of an action, as will be shown in Sect. 13.7.

We will here follow the development pioneered in statistical physics and field
theory [1, 2] to define the effective action or vertex-generating function (see also
[3, chapter 5]).

We write the cumulant-generating function in its integral representation

exp (W(j)) = Z(j) = Z(0)−1
∫

dx exp
(
S(x) + jTx

)
, (11.6)

to derive an equation that includes fluctuations around x∗. First we leave this
point x∗ arbitrary. This is sometimes called the background field method [4,
Chapter 3.23.6], allowing us to treat fluctuations around some chosen reference
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field. We separate the fluctuations of δx = x − x∗, insert this definition into
Eq. (11.6) and bring the terms independent of δx to the left-hand side

exp
(
W(j) − jTx∗) = Z(0)−1

∫
dδx exp

(
S(x∗ + δx) + jTδx

)
. (11.7)

We now make a special choice of j . For given x∗, we choose j so that x∗ = 〈x〉(j)

becomes the mean. The fluctuations of δx then have vanishing mean value, because

x∗ != 〈x〉 = 〈x∗ + δx〉. Stated differently, we demand

0
!= 〈δx〉 ≡Z(0)−1

∫
dδx exp

(
S(x∗ + δx) + jTδx

)
δx

≡Z(0)−1 d

dj

∫
dδx exp

(
S(x∗ + δx) + jTδx

)

= d

dj
exp
(
W(j) − jTx∗) ,

where we used Eq. (11.7) in the last step. Since the exponential function has the
property exp(x)′ > 0 ∀x, the latter expression vanishes at the point where the
exponent is stationary

d

dj

(
W(j) − jTx∗) = 0 (11.8)

〈x〉(j) = ∂W(j)

∂j
= x∗(j),

which shows again that x∗(j) = 〈x〉(j) is the expectation value of x at a given value
of the source j .

The condition (11.8) has the form of a Legendre transform from the function
W(j) to the new function, which we call the vertex-generating function or
effective action

�(x∗) := sup
j

jTx∗ − W(j). (11.9)

The condition (11.8) implies that j is chosen such as to extremize �(x∗). We see
that it must be the supremum, because W is a convex down function (see Sect. 11.9).
It follows that −W is convex up and hence the supremum of jTx∗ − W(j) at given
x∗ is uniquely defined; the linear term does not affect the convexity of the function,
since its curvature is zero.
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The Legendre transform has the property

d�

dx∗ (x∗) =j + ∂jT

∂x∗ x∗ − ∂WT

∂j︸ ︷︷ ︸
x∗T

∂j

∂x∗ (11.10)

=j,

The latter equation is also called equation of state, as its solution for x∗ allows us
to determine the mean value for a given source j , including all corrections due to
fluctuations. In statistical physics this mean value is typically an order parameter, an
observable that characterizes the state of the system.

The solutions of the equation of state (11.10) are self-consistent, because the
right-hand side depends on the value x∗ to be found. The equation of state can
be interpreted as a particle in a classical potential �(x∗) and subject to a force j .
The equilibrium point of the particle, x∗, is then given by the equilibrium of the
two forces j and −d�/dx∗ ≡ −�(1)(x∗), which need to cancel; identical to the
equation of state equation (11.10)

0 = j − �(1)(x∗).

Comparing Eq. (11.8) and Eq. (11.10) shows that the functions W(1) and �(1) are
inverse functions of one another. It therefore follows by differentiation

�(1)(W(1)(j)) = j (11.11)

�(2)(W(1)(j)) W(2)(j) = 1

that their Hessians are inverse matrices of each other

�(2) =
[
W(2)

]−1
. (11.12)

From the convexity of W therefore follows with the last expression that also � is
a convex down function. The solutions of the equation of state thus form convex
regions. An example of the function � is shown in Fig. 11.2c.

One can see that the Legendre transform is involutive for convex functions:
applied twice it is the identity. Convexity is important here, because the Legendre
transform of any function is convex. In particular, applying it twice, we arrive back
at a convex function. So we only get an involution for convex functions to start with.
This given, we define

w(j) := jTx∗ − �(x∗)

with
d�(x∗)

dx∗ = j
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Fig. 11.2 Loopwise expansion of � for “φ3 + φ4” theory. (a) Probability density for action

S(x) = l
(

1
2 x2 + α
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3 + β
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4
)

with α = 1, β = −1, l = 4 for different values of the source j ∈
[−2, . . . , 2] (from black to light gray, black dotted curve for j = 0). The peak of the distribution
shifts with j . (b) The mean value 〈x〉(j) as function of j . One-loop prediction of mean value at
j = 0 by tadpole diagram lα

3! (3) 1
l2 = α

2l
is shown as black cross. Black dashed: exact; gray:

solution of one-loop approximation of equation of state, light gray: two-loop approximation. (c)
Effective action �(x∗) determined numerically as �(x∗)− lnZ(0) = supj jx∗ −W(j)− lnZ(0)

(black) and by loopwise expansion (gray dotted: zero-loop, gray dashed: one-loop, dark gray
dashed: two-loop (see exercises). (d) Cumulant-generating function W(j). (e) Error ε = �x loop−�

of the loopwise expansions of different orders x (same symbol code as in (c)). (f) Variance of x

given by 〈〈x2〉〉 = W(2)(j (x∗)) as a function of the mean value x∗ (same symbol code as in (c))

it follows that

dw(j)

dj
= x∗ + jT ∂x∗

∂j
− ∂�

∂x∗
T

︸ ︷︷ ︸
=jT

∂x∗

∂j
= x∗(j) (11.13)

= 〈x〉(j),

where the equal sign in the last line follows from our choice (11.8) above. We hence
conclude that w(j) = W(j) + c with some inconsequential constant c.



134 11 Vertex-Generating Function

In the following we will investigate which effect the transition from W(j) to its
Legendre transform �(x∗) has in terms of Feynman diagrams. The relation between
graphs contributing to W and those that form � will be exposed in Chap. 12.

11.3 Perturbation Expansion of �

We have seen that we may obtain a self-consistency equation for the mean value x∗
from the equation of state (11.10). The strategy therefore is to obtain an approxi-
mation of � that includes fluctuation corrections and then use the equation of state
to get an approximation for the true mean value including these very corrections.
We will here obtain a perturbative procedure to calculate approximations of � and
will find the graphical rules for doing so. To solve a problem perturbatively we
decompose the action, as in Chap. 4, into S(x) = S0(x) + εV (x) with a part
S0 that can be solved exactly, i.e. for which we know the cumulant-generating
function W0(j), and the remaining terms collected in εV (x). An example of a real
world problem applying this technique is given in Sect. 11.11. We here follow the
presentation by Kühn and Helias [5].

To lowest order in perturbation theory, namely setting ε = 0, we see that W(j) =
W0(j); the corresponding leading order term in � is the Legendre transform

�0(x
∗) = sup

j

jTx∗ − W0(j). (11.14)

We now want to derive a recursive equation to obtain approximations of the form

�(x∗) =: �0(x
∗) + �V (x∗), (11.15)

where we defined �V (x∗) to contain all correction terms due to the interaction
potential V to some order εk of perturbation theory.

Let us first see why the decomposition into a sum in Eq. (11.15) is useful. To this
end, we first rewrite Eq. (11.7), employing Eq. (11.10) to replace j (x∗) = �(1)(x∗)
and by using x = x∗ + δx as

exp(−�(x∗)) = Z−1(0)

∫
dx exp(S(x) + �(1)T(x∗)(x − x∗)) (11.16)

= Z−1(0)

∫
dx exp(S0(x) + εV (x) + �(1)T(x∗)(x − x∗)),

where we used in the second line the actual form of the perturbative problem.
Inserting the decomposition Eq. (11.15) of � into the solvable and the perturbing
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part we can express Eq. (11.16) as

exp(−�0(x∗) − �V (x∗))

= Z−1(0)

∫
dx exp

(
S0(x) + εV (x) + (�(1)T

0 (x∗) + �
(1)T
V

(x∗)
)
(x − x∗)

)

Moving a term independent of the integration variable x to the left hand side, we get

exp(−�0(x∗) + �
(1)T
0 (x∗) x∗

︸ ︷︷ ︸
W0(j)

∣∣
j=�

(1)
0 (x∗)

−�V (x∗))

= exp
(
εV (∂j ) + �

(1)T
V

(x∗)(∂j − x∗)
) Z−1(0)

∫
dx exp

(
S0(x) + jTx)

)∣∣
j=�

(1)
0 (x∗)︸ ︷︷ ︸

W0(j)
∣∣
j=�

(1)
0 (x∗)

= exp
(
εV (∂j ) + �

(1)T
V (x∗)(∂j − x∗)

)
exp
(
W0(j)

)∣∣
j=�

(1)
0 (x∗),

where we moved the perturbing part in front of the integral, making the replacement
x → ∂j as in Eq. (5.2) and we identified the unperturbed cumulant-generating

function exp(W0(j))
∣∣
j=�0(x

∗) = Z−1(0)
∫

dx exp
(
S0(x) + �

(1)T
0 (x∗) x

)
from the

second to the third line. Bringing the term �
(1)T
0 (x∗)x∗ to the left-hand side, we get

−�0(x
∗) + jTx∗ = W0(j)

∣∣
j=�

(1)
0 (x∗), which follows from the definition (11.14).

Multiplying with exp(−W0(j))
∣∣
j=�

(1)
0 (x∗) from left then leads to a recursive equa-

tion for �V

exp(−�V (x∗)) (11.17)

= exp(−W0(j)) exp
(
εV (∂j ) + �

(1)T
V (x∗)(∂j − x∗)

)
exp(W0(j))

∣∣
j=�

(1)
0 (x∗),

which shows that our ansatz Eq. (11.15) was indeed justified: we may determine �V

recursively, since �V appears again on the right-hand side.
We want to solve the latter equation iteratively order by order in the number

of interaction vertices k. We know that to lowest order Eq. (11.14) holds, so
�V,0 = 0 in this case. The form of the terms on the right-hand side of Eq. (11.17)
is then identical to Eq. (5.2), so we know that the first-order (ε1) contribution
are all connected diagrams with one vertex from εV and connections formed by
the cumulants of W0(j), where finally we set j = �

(1)
0 (x∗). The latter step is

crucial to be able to write down the terms explicitly. Because �(1) and W(1) are
inverse functions of one another (following from Eqs. (11.8) and (11.10)), this step
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expresses all cumulants in W0 as functions of the first cumulant:

〈〈xn〉〉(x∗) = W
(n)
0 (�

(1)
0 (x∗)︸ ︷︷ ︸
≡j0(x∗)

) (11.18)

x∗ = W
(1)
0 (j0) ↔ j0 = �

(1)
0 (x∗).

The graphs then contain n-th cumulants of the unperturbed theory 〈〈xn〉〉(x∗): To
evaluate them, we need to determine x∗ = W

(1)
0 (j0), invert this relation to obtain

j0(x
∗), and insert it into all higher derivatives W

(n)
0 (j0(x

∗)), giving us explicit
functions of x∗. The aforementioned graphs all come with a minus sign, due to
the minus on the left-hand side of equation (11.17).

We want to solve (11.17) iteratively order by order in the number of vertices k,
defining �V,k. Analogous to the proof of the linked cluster theorem, we arrive at a
recursion by writing the exponential of the differential operator in Eq. (11.17) as a
limit

exp
(
εV (∂j ) + �

(1)T
V (x∗)(∂j − x∗)

) = lim
L→∞

(
1 + 1

L

(
εV (∂j )

+ �
(1)T
V (x∗)(∂j − x∗)

))L

.

(11.19)

Initially we assume L to be fixed but large and choose some 0 ≤ l ≤ L. We move
the term exp(−W0(j)) to the left-hand side of equation (11.17) and define gl(j) as
the result after application of l factors of the right-hand side as

exp(W0(j) + gl(j)) :=
(

1 + 1

L

(
εV (∂j ) + �

(1)T
V (x∗) (∂j − x∗)

))l

exp(W0(j)),

(11.20)

where, due to the unit factor in the bracket
(
1 + . . .

)l we always get a factor
exp(W0(j)), written explicitly. We obviously have the initial condition

g0 ≡ 0. (11.21)

For l = L → ∞ this expression collects all additional graphs and we obtain the
desired perturbative correction Eq. (11.15) of the effective action as the limit

− �V (x∗) = lim
L→∞ gL(j)

∣∣∣
j=�

(1)
0 (x∗)

. (11.22)
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It holds the trivial recursion

exp(W0(j) + gl+1(j)) =
(

1 + 1

L

(
εV (∂j ) + �

(1)T
V (x∗) (∂j − x∗)

))

× exp(W0(j) + gl(j))

from which we get a recursion for gl :

gl+1(j) − gl(j) (11.23)

= ε

L
exp(−W0(j) − gl(j)) V (∂j ) exp(W0(j) + gl(j)) (11.24)

+ 1

L
exp(−W0(j) − gl(j)) �

(1)
V (x∗)

(
∂j − x∗) exp(W0(j) + gl(j)) (11.25)

+O(L−2),

where we multiplied from left by exp(−W0(j) − gl(j)), took the logarithm and
used ln(1 + 1

L
x) = 1

L
x +O(L−2). To obtain the final result Eq. (11.22), we need to

express j = �
(1)
0 (x∗) in gl(j).

11.4 Generalized One-line Irreducibility

We now want to investigate what the iteration (11.23) implies in terms of diagrams.
We therefore need an additional definition of the topology of a particular class of
graphs.

The term one-line irreducibility in the literature refers to the absence of
diagrams that can be disconnected by cutting a single second-order bare propagator
(a line in the original language of Feynman diagrams). In the slightly generalized
graphical notation introduced in Chap. 5, these graphs have the form

k 0 k

,

where two sub-graphs of k′ and k′′ vertices are joined by a bare second-order
cumulant . We need to define irreducibility of a graph in a more general
sense here so that we can extend the results also for perturbative expansions around
non-Gaussian theories. We will call a graph reducible, if it can be decomposed
into a pair of sub-graphs by disconnecting the end point of a single vertex. In the
Gaussian case, this definition is identical to one-line reducibility, because all end
points of vertices necessarily connect to a second-order propagator. This is not
necessarily the case if the bare theory has higher order cumulants. We may have
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components of graphs, such as

(11.26)

where the three-point interaction connects to two third- (or higher) order cumulants
on either side. Disconnecting a single leg, either to the left or to the right,
decomposes the diagram into two parts. We here call such a diagram reducible and
diagrams without this property irreducible.

We employ the following graphical notation: Since gl(j) =:
gl

depends on j

only indirectly by the j -dependence of the contained bare cumulants, we denote the
derivative by attaching one leg, which is effectively attached to one of the cumulants
of W0 contained in gl

j
gl

:= ∂j

gl

:= ∂j gl(j)

We first note that Eq. (11.23) generates two kinds of contributions to gl+1,
corresponding to the lines (11.24) and (11.25), respectively. The first line causes
contributions that come from the vertices of εV (∂j ) alone. These are similar as in
the linked cluster theorem Eq. (5.5). Determining the first-order correction yields
with g0 = 0

g1(j) = ε

L
exp(−W0(j)) V (∂j ) exp(W0(j)) (11.27)

+O(L−2),

which contains all graphs with a single vertex from V and connections formed by
cumulants of W0. These graphs are trivially irreducible, because they only contain
a single vertex; the definition of reducibility above required that we can divide the
diagram into two graphs each of which contain interaction vertices.

The proof of the linked cluster theorem (see Sect. 5.2) shows how the construc-
tion proceeds recursively: correspondingly the l + 1-st step (11.24) generates all
connected graphs from components already contained in W0 + gl . These are tied
together with a single additional vertex from εV (x). In each step, we only need to
keep those graphs where the new vertex in Eq. (11.24) joins at most one component
from gl to an arbitrary number of components of W0, hence we maximally increase
the number of vertices in each component by one. This is so, because comparing
the combinatorial factors in Eqs. (5.10) and (5.11), contributions formed by adding
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more than one vertex (joining two or more components from gl by the new vertex)
in a single step are suppressed with at least L−1, so they vanish in the limit (11.22).

The second term (11.25) is similar to (11.24) with two important differences:

• The single appearance of the differential operator ∂j acts like a monopole vertex:

the term therefore attaches an entire sub-diagram contained in �
(1)
V by a single

link to any diagram contained in gl .
• The differential operator appears in the form ∂j − x∗. As a consequence, when

setting j0 = �
(1)
0 (x∗) in the end in Eq. (11.22), all terms cancel where ∂j acts

directly on W0(j), because W
(1)
0 (j0) = x∗; non-vanishing contributions only

arise if the ∂j acts on a component contained in gl . Since vertices and cumulants
can be composed to a final graph in arbitrary order, the diagrams produced by
∂j − x∗ acting on gl are the same as those in which ∂j − x∗ first acts on W0 and

in a subsequent step of the iteration another ∂j acts on the produced W
(1)
0 . So to

construct the set of all diagrams it is sufficient to think of ∂j as acting on gl alone;
the reversed order of construction, where ∂j first acts on W0 and in subsequent
steps of the iteration the remainder of the diagram is attached to the resulting
W

(1)
0 , is contained in the combinatorics.

• These attached sub-diagrams from �
(1)
V (x∗) do not depend on j ; the j -

dependence of all contained cumulants is fixed to the value j = �
(1)
0 (x∗),

as seen from Eq. (11.17). As a consequence, these sub-graphs cannot form
connections to vertices in subsequent steps of the iteration.

From the last point follows in addition, that the differentiation in Eq. (11.25) with

�
(1)
V (x∗) ≡ ∂x∗�V (x∗) L→∞= −∂x∗(gL ◦�

(1)
0 (x∗)) produces an inner derivative �

(2)
0

attached to a single leg of any component contained in gL. Defining the additional
symbol

(2)
0 (x∗) =:

0

allows us to write these contributions as

∂x∗(gL ◦ (1)
0 ) ≡ (g

(1)
L ◦ (1)

0
(2)
0 =

gL 0

(11.28)

So in total at step l + 1, the line (11.25) contributes graphs of the form

g
(1)
L

(2)
0 g

(1)
l =

gL 0 gl

.
(11.29)
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Since by their definition as a pair of Legendre transforms we have

1 = (2)
0 W

(2)
0 =

0 0

,

we notice that the subtraction of the graphs (11.29) may cancel certain connected
graphs produced by the line equation (11.24). In the case of a Gaussian solvable
theory W0 this cancelation is the reason why only one-line irreducible contributions
remain. We here obtain the general result, that these contributions cancel all
reducible components, according to the definition above.

To see the cancelation, we note that a reducible graph by our definition has at
least two components joined by a single leg of a vertex. Let us first consider the case
of a diagram consisting of exactly two one-line irreducible sub-diagrams joined by
a single leg. This leg may either belong to the part g

(1)
L or to g

(1)
l in Eq. (11.29),

so either to the left or to the right sub-diagram. In both cases, there is a second
cumulant W

(2)
0 either left or right of �

(2)
0 . This is because if the two components are

joined by a single leg, this particular leg must have terminated on a W
(1)
0 prior to the

formation of the compound graph; in either case this term generates W
(1)
0

∂j→ W
(2)
0 .

The second point to check is the combinatorial factor of graphs of the form
Eq. (11.29). To construct a graph of order k, where the left component has k′ bare
vertices and the right has k−k′, we can choose one of the L steps within the iteration
in which we may pick up the left term by Eq. (11.25). The remaining k − k′ vertices

are picked up by Eq. (11.24), which are

(
L − 1
k − k′

)
possibilities to choose k − k′

steps from L − 1 available ones. Every addition of a component to the graph comes

with L−1. Any graph in �V with k′ vertices is ∝ εk′
k′! , so together we get

L

L

εk′

k′!
( ε

L

)k−k′ (
L − 1
k − k′

)
L→∞→ εk

k′!(k − k′)! . (11.30)

The symmetry factors s1, s2 of the two sub-graphs generated by Eq. (11.29) enter
the symmetry factor s = s1 · s2 · c of the composed graph as a product, where c

is the number of ways in which the two sub-graphs may be joined. But the factor
s, by construction, excludes those symmetries that interchange vertices between the
two sub-graphs. Assuming, without loss of generality, a single sort of interaction

vertex, there are s′ =
(

k

k′
)

ways of choosing k′ of the k vertices to belong to the

left part of the diagram. Therefore the symmetry factor s is smaller by the factor
s′ than the symmetry factor of the corresponding reducible diagram constructed by
Eq. (11.24) alone, because the latter exploits all symmetries, including those that
mix vertices among the sub-graphs. Combining the defect s′ with the combinatorial
factor equation (11.30) yields 1

k′!(k−k′)!/s
′ = 1

k! , which equals the combinatorial
factor of the reducible graph.
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Let us now study the general case of a diagram composed of an arbitrary number
of sub-diagrams of which M are irreducible and connected to the remainder of the
diagram by exactly one link. The structure of such a diagram is a (Cayley) tree and
M is the number of “leaves.” We assume furthermore that the whole diagram has
k vertices in total and a symmetry factor S. We can replace r = 0, . . . ,M of the
leaves by �(1)-diagrams. We want to show that the sum of these M+1 sub-diagrams
vanishes. A diagram with r replaced leaves yields the contribution

1

kt ! ∏r
i=1 ki ! S̃ · C, (11.31)

where S̃ is the symmetry factor of the diagram with replaced leaves, C is some
constant equal for all diagrams under consideration and kt and ki are the numbers
of vertices in the “trunk” of the tree and in the i-th leaf, respectively, where kt +∑r

i ki = k. Analogous to the case of two sub-diagrams, we can determine the

relation of S̃ to S: We have S̃ = S

(
k

kt , k1, . . . , kr

)−1

= S k!
kt ! ∏r

i=1 ki ! , because in

the diagram without explicit sub-diagrams, we have

(
k

kt , k1, . . . , kr

)
possibilities

to distribute the vertices in the respective areas. Therefore, the first two factors in

Eq. (11.31) just give S
k! , the prefactor of the original diagram. Now, we have

(
M

r

)

possibilities to choose r leaves to be replaced and each of these diagrams contributes
with the sign (−1)r . Summing up all contributions leads to

S · C
n!

M∑
r=0

(
M

r

)
(−1)r = S · C

n! (1 − 1)M = 0.

In summary we conclude that all reducible graphs are canceled by Eq. (11.29).
But there is a second sort of graphs produced by Eq. (11.29) that does not exist

in the Gaussian case: If the connection between the two sub-components by
ends on a third- or higher order cumulant. These graphs cannot be produced by
Eq. (11.24), so they remain with a minus sign. We show an example of such graphs
in the following Sect. 11.5. One may enumerate all such diagrams by an expansion
in terms of skeleton diagrams [5].

We now summarize the algorithmic rules derived from the above observations to
obtain �:

1. Calculate �0(x
∗) = supj jTx∗ − W0(j) explicitly by finding j0 that extremizes

the right-hand side. At this order g0 = 0.
2. At order k in the perturbation expansion:

(a) Add all irreducible graphs in the sense of the definition above that have k

vertices;
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(b) Add all graphs containing derivatives �
(n)
0 as connecting elements that cannot

be reduced to the form of a graph contained in the expansion of WV (j0); the
graphs left out are the counterparts of the reducible ones in WV (j0). The
topology and combinatorial factors of these non-standard contributions are
generated iteratively by Eq. (11.23) from the previous order in perturbation
theory; this iteration, by construction, only produces diagrams, where at least
two legs of each �

(n)
0 connect to a third or higher order cumulant. We can

also directly leave out diagrams, in which a sub-diagram contained in WV is
connected to the remainder of the diagram by a single leg of an interaction
vertex.

3. Assign the factor εk

r1!···rl+1! to each diagram with ri -fold repeated occurrence of
vertex i; assign the combinatorial factor that arises from the possibilities of
joining the connecting elements as usual in Feynman diagrams (see examples
below).

4. Express the j -dependence of the n-th cumulant 〈〈xn〉〉(x∗) in all terms by the first
cumulant x∗ = 〈〈x〉〉 = W

(1)
0 (j0); this can be done, for example, by inverting the

last equation or directly by using j0 = �
(1)
0 (x∗); express the occurrence of �

(2)
0

by its explicit expression.

11.5 Example

As an example let us consider the case of a theory with up to third- order cumulants
and a three-point interaction vertex:

=

W0(j) = = j + 1

2
jj + 1

3! j

j

j

The first order g1 is then

g1 = + +
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and the second gives

g2 − g1 =

+ + ... +

−
= 1

− ... −
= 1

−

additional non-cancelling diagram

We see that the diagrams which can be composed out of two sub-diagrams of
lower order and are connected by a single line are cancelled. In addition we get
contributions from the term (11.25), where ties together two lower order
components by attaching to a cumulant of order three or higher on both sides. Such
contributions cannot arise from the term (11.24) and are therefore not canceled.

11.6 Vertex Functions in the Gaussian Case

When expanding around a Gaussian theory

S0(x) = −1

2
(x − x0)

TA(x − x0),

the Legendre transform �0(x
∗) is identical to minus this action, so we have (see

Sect. 11.10 for details)

�0(x
∗) = −S0(x

∗) = 1

2
(x∗ − x0)

TA(x∗ − x0). (11.32)

Hence expressing the contributing diagrams to �V (x∗), according to (11.22), as
functions of x∗, we need to determine j0(x

∗) = �
(1)
0 (x∗). With the symmetry of A,
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the product rule and (11.32) this yields

j0(x
∗) = �

(1)
0 (x∗) = A(x∗ − x0). (11.33)

Here the step of expressing all cumulants by x∗ using (11.33) is trivial: The
cumulant-generating function is W0(j) = j x0 + 1

2jTA−1j . The first cumulant

W
(1)
0 (j0) = x0+A−1j0 = x0+A−1A(x∗−x0) = x∗ is, by construction, identical to

x∗ and the second � = W(2)(j) = A−1 is independent of j and hence independent
of x∗.

Applying the rules derived in Sect. 11.3, we see that all connections are made
by = . Hence, all diagrams cancel which are composed of (at least) two
components connected by a single line, because each leg of a vertex necessarily
connects to a line. Also, there are no non-standard diagrams produced, because there
are only second cumulants in W0 and because �

(2)
0 = [W(2)

0 ]−1 = A is independent

of x∗, so derivatives by x∗ cannot produce non-standard terms with �
(>2)
0 .

The cancelled diagrams are called one-line reducible or one-particle-reducible.
We therefore get the simple rule for the Gaussian case

�V (x∗) = −
∑
1PI

∈ WV (�
(1)
0 (x∗)) (11.34)

= −
∑
1PI

∈ WV (j)

∣∣∣
j=A(x∗−x0)

,

where the subscript 1PI stands for only including the one-line irreducible dia-
grams, those that cannot be disconnected by cutting a single line.

Given we have all connected 1PI graphs of WV , each external leg j is connected
by a propagator � = A−1 to a source j , canceling the factor A. Diagrammatically,
we imagine that we set j = A(x∗ − x0) in every external line of a graph, so

. . .
j=A(x∗−x0)

=
1

(x∗ − x0).

We therefore obtain the diagrammatic rules for obtaining the vertex-generating
function for the perturbation expansion around a Gaussian:

• Determine all 1PI connected diagrams with any number of external legs.
• Remove all external legs including the connecting propagator � = A−1.
• Replace the resulting uncontracted x on the vertex that was previously connected

to the leg by x∗ − x0.
• For the expansion around a Gaussian theory, W

(2)
0 = A−1 is independent of j0;

so x∗ can only appear on an external leg.
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The fact that the external legs including the propagators are removed is sometimes
referred to as amputation. In the Gaussian case, by the rules above, the equation of
state (11.10) amounts to calculating all 1PI diagrams with one external (amputated)
leg. We use the notation

∗)
∂x∗

k

= x∗
k

for such a derivative of � by xk, as introduced above. We can also see the amputation
for the correction terms directly: Due to

∂�V

∂x∗ = − ∂

∂x∗
∑
1PI

∈ WV (�
(1)
0 (x∗)) = −

∑
1PI

∈ W
(1)
V (�

(1)
0 (x∗))�(2)

0 (x∗)

each external leg is “amputated” by the inverse propagator �
(2)
0 = (

W(2)
)−1 = A

arising from the inner derivative.

11.7 Example: Vertex Functions of the “φ3 + φ4”-Theory

As an example let us study the action (4.11) with K = 1. We have seen the
connected diagrams that contribute to W in Sect. 5.4. With the results from
Sect. 11.3 we may now determine �(x∗). To lowest order we have the Legendre
transform of W0(j) = 1

2j2, which we determine explicitly as

�0(x
∗) = sup

j

x∗j − W0(j),

∂

∂j

(
x∗j − W0(j)

) != 0 ↔ x∗ = j,

�0(x
∗) = (x∗)2 − W0(x

∗) = 1

2

(
x∗)2 . (11.35)

So for a Gaussian theory, we have that �0(x
∗) = −S(x∗). The loopwise expansion

studied in Chap. 13 will yield the same result. We will, however, see in Sect. 11.11
that in the general case of a non-Gaussian solvable theory this is not so.

The corrections of first order are hence the connected diagrams with one
interaction vertex (which are necessarily 1PI), where we need to replace, according
to (11.33), j = �

(1)
0 (x∗) = x∗ so we get from the diagrams with one external leg

(compare Sect. 5.4)

x∗
=3 · ·x∗ α

3!K
−1 x∗α

2
K−1= =
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We here used the notation for the amputated legs. From the correction with
two external legs we get

x∗

x∗

= 4 · 3 · (x∗)2

2!
β

4!K
−1 = β

4
K−1 x∗ 2

.

Finally we have the contributions from the bare interaction vertices with three and
four legs

3 · 2 ·x∗

x∗
x∗

= 3 · 2 · (x∗) 3

3!
α

3!

x∗ x∗

x∗ x∗
= 4 · 3 · 2 · (x∗)4

4!
β

4! .

The latter two terms show that the effective action contains, as a subset, also the
original vertices of the theory.

So in total we get the correction at first order to �

�V,1(x
∗) = −ε

(
α

2
K−1 x∗ + β

4
K−1 (x∗)2 + α

3!
(
x∗)3 + β

4!
(
x∗)4) .

(11.36)

The expansion of � including all corrections up to second order in ε will be content
of the exercises.

11.8 Appendix: Explicit Cancelation Until Second Order

Alternative to the general proof given above, we may see order by order in ε, that
Eq. (11.34) holds. At lowest order WV ≡ 0 and Eq. (11.14) holds, so the assumption
is true. Taking into account the corrections that have one interaction vertex, we get
the additional term WV,1(�

(1)(x∗)) = WV,1(�
(1)
0 (x∗)) + O(k2). We have replaced

here the dependence on �(1)(x∗) by the lowest order �
(1)
0 (x∗), because WV,1 already

contains one interaction vertex, so the correction would already be of second order.
As there is only one interaction vertex, the contribution is also 1PI. In addition, we
get a correction to j = j0 + jV,1, inserted into

�(x∗)) = jTx∗ − W0(j) − WV (j)

∣∣∣
j=�(1)(x∗)

(11.37)
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and expanding W0(j0 + jV,1) = W0(j0)+W
(1)
0 (j0) jV,1 +O(j2

V,1) around j0 leaves
us with

−�(x∗) = −jT
0 x∗ + W0(j0)︸ ︷︷ ︸

−�0(x
∗)

+jT
V,1

(
W

(1)
0 (j0) − x∗)

︸ ︷︷ ︸
=0

+WV,1(j0)

∣∣∣∣∣∣∣∣
j0=�

(1)
0 (x∗) , jV,1=�

(1)
1 (x∗)

+ O(ε2)

= −�0(x∗) + WV,1(j0)
∣∣
j0=�

(1)
0 (x∗) , (11.38)

where the shift of j by jV,1 in the two terms making up �0 cancel each other. To
first order, the assumption is hence true. At second order we have

−�(x∗) = −jT
0 x∗ + W0(j0)︸ ︷︷ ︸

−�0(x
∗)

+ (jV,1 + jV,2)
T
(
W

(1)
0 (j0) − x∗)

︸ ︷︷ ︸
=0

+1

2
jT
V,1W

(2)
0 jV,1 + jT

V,1W
(1)
V ,1

+ WV,1(j0) + WV,2(j0)

∣∣∣
j0=�

(1)
0 (x∗) jV,1=�

(1)
1 (x∗)

+ O(ε3).

Using that jV,1 = −W
(1)
V ,1(�

(1)
0 (x∗)) �

(2)
0 (x∗), following from differentiation

of (11.38) by x∗, we can combine the two underlined terms by using
�

(2)
0 (x∗)W(2)

0 (j0) = 1 to obtain W
(1)T
V,1 j1 = −W

(1)T
V,1 (j0) �

(2)
0 (x∗) W

(1)T
V,1 (j0). We

see that �
(2)
0 (x∗) =

(
W

(2)
0 (j0)

)−1
amputates the propagator of the external legs

of W
(1)
V ,1. The latter factor W

(1)
V ,1 in any case has an external leg connected to the

remaining graph, also if the solvable theory has non-vanishing mean W
(1)
0 (0) 
= 0,

because W by the linked cluster theorem (see Chap. 5) only contains connected
diagrams whose end points are either W

(2)
0 (j) j or W

(1)
0 (j). In the first case, the

derivative acting on W(2) yields 0 (by the assumption W
(≥3)
0 = 0), acting on j

yields W(2)(j). In the second case, the derivative acts on the argument of W(1)(j)

and hence also produces a factor W(2)(j). In all cases, the term hence consists of
two 1PI components of first order connected by a single line. So in total we get

−�(x∗) = −�0(x
∗) + WV,1(j0) + WV,2(j0) − 1

2
W

(1)T
V,1 (j0) �

(2)
0 (x∗) W

(1)T
V,1 (j0)︸ ︷︷ ︸∑

1PI∈WV,2(j0)

.

The last two terms together form the 1PI diagrams contained in WV,2(j0): All
diagrams of second order that are connected by a single link (coming with a factor
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1/2, because they have two interaction vertices, see Chap. 4) are canceled by the
last term, which produces all such contributions.

11.9 Appendix: Convexity ofW

We first show that the Legendre transform of any function f (j) is convex. This is
because for

g(x) := sup
j

jTx − f (j)

we have with α + β = 1

g(αxa + βxb) = sup
j

jT(αxa + βxb) − (α + β) f (j)

≤ sup
ja

α
(
jT
a xa − f (ja)

)+ sup
jb

β
(
jT
b xb − f (jb)

)

= α g(xa) + β g(xb),

which is the definition of a convex down function: the function is always below
the connecting chord. Hence we can only come back to W after two Legendre
transforms if W is convex to start with.

We now show that a differentiable W is convex. For a differentiable function it
is sufficient to show that its Hessian, the matrix of second derivatives has a definite
sign; the function then has a defined curvature and is thus convex. In the current
case, W(2) is the covariance matrix, it is thus symmetric and therefore has real
eigenvalues. For covariance matrices the eigenvalues are non-negative [6, p. 166]. If
all eigenvalues are positive, then W is strictly convex (has no directions of vanishing
curvature). This can be seen from the following argument. Let us define the bi-linear
form

f (η) := ηTW(2)η.

A positive semi-definite bi-linear form has the property f (η) ≥ 0 ∀η. Because
W(2) is symmetric, the left and right eigenvectors are identical. Therefore positive
semi-definite also implies that all eigenvalues must be non-negative. With δx :=
x − 〈x〉 we can express W

(2)
kl = 〈δxkδxl〉, because it is the covariance, so we may

explicitly write f (η) as

f (η) =
∑
k,l

ηkW
(2)
kl ηl

= Z−1(j) ηT
∫

dx δx δxT exp
(
S(x) + jTx

)
η
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= Z−1(j)

∫
dx
(
ηTδx

)2
exp
(
S(x) + jTx)

)
≥ 0,

where Z−1(j) = ∫ dx exp
(
S(x) + jTx)

) ≥ 0.
Therefore even if W(j) has vanishing Hessian on a particular segment (W has a

linear segment), supj jTx∗ − W(j) has a unique value for each given x∗ and hence
�(x∗) is well defined.

11.10 Appendix: Legendre Transform of a Gaussian

For a Gaussian theory S0(x) = − 1
2 (x − x0)

TA (x − x0) and � = A−1 we have

W0(j) = jTx0 + 1

2
jT � j

�0(x
∗) = sup

j

jTx∗ − W0(j).

We find the extremum for j as

0 = ∂j

(
jTx∗ − W0(j)

)
= ∂j

(
jT(x∗ − x0) − 1

2
jT � j

)
= x∗ − x0 − �j

j = �−1 (x∗ − x0
)
.

Inserted into the definition of �0 this yields (with �−1 = �−1T)

�0(x
∗) = (x∗ − x0

)T
�−1(x∗ − x0) − 1

2

(
x∗ − x0

)T
�−1� �−1 (x∗ − x0

)
.

= 1

2

(
x∗ − x0

)T
A
(
x∗ − x0

)
(11.39)

= −S0(x
∗).

11.11 Problems

a) Second-Order Approximation of� for the “φ3 + φ4”-Theory

Determine diagrammatically all contributions at second order to �, extending the
results of Sect. 11.7. You may make use of the connected diagrams contributing to
W in Sect. 5.4 (6 points).
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b) Explicit Calculation of� for the “φ3”-Theory

For the action (4.11), setting β = 0, calculate the effective action � explicitly in a
perturbation expansion up to second order in ε as the Legendre transform of W(j).
Your calculation may follow along the lines of the general calculation in Sect. 11.8:

1. Start with the result (11.35), valid to lowest order.
2. Determine all diagrams correcting W to first and second order.
3. Perform the Legendre transform by determining the j that maximizes

Eq. (11.37); convince yourself that you only need j correct up to first order
in ε, if � is supposed to be correct up to second order.

4. Insert the found j into the definition of � (11.37) and see how two one-line
reducible diagrams produced at second order are canceled (8 points).

c) Effective Equation ofMotion

We here study the stochastic differential equation (9.3)

dx(t) + x(t) dt = ε

2!x
2(t) dt + dW(t) (11.40)

from the lecture and want to derive the effective equation of motion for the mean
value of x∗(t) = 〈x(t)〉 from the equation of state (11.10) expressed with help of the
effective action. First approximate the effective action to lowest order by Eq. (11.39)
as �0[x∗, x̃∗] = −S[x∗, x̃∗] (1 point). We know from Sect. 9.1 that the true mean
value of 〈x̃(t)〉 ≡ 0 ∀t . Show that this is indeed a solution of the equation of state
(2 points). So we only need to consider the single equation

j̃ (t) = δ�[x∗, x̃∗ = 0]
δx̃∗(t)

. (11.41)

We now want to determine the fluctuation corrections in perturbation theory,
according to Sect. 11.6.

Show by functional Taylor expansion (Eq. (6.5)) of �[x, x̃] in the field x, that the
effective equation of motion can be written with the help of the vertex functions, the
derivatives of �, as

j̃ (t) = −(∂t + 1) x∗(t) + ε

2!x
∗2(t)

+
∞∑

n=0

1

n!
n∏

l=1

{
∫

dtl} δ�V [x∗ = 0, x̃∗ = 0]
δx̃∗(t) δx∗(t1) · · · δx∗(tn)

x∗(t1) · · · x∗(tn).
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(2 points). We now would like to determine the fluctuation corrections up to the
linear order in x∗ to get the effective equation of motion

j̃ (t) = −(∂t + 1) x∗(t) + δ�V

δx̃∗(t)
+
∫

dt ′ δ�V

δx̃∗(t)δx∗(t ′)
x∗(t ′) + O(

(
x∗)2).

(11.42)

Such an approximation would, for example, tell us how the system relaxes back
from a small perturbation away from x∗ = 0. The latter integral term is a time-non-
local, but linear indirect self-feedback due to the fluctuations.

Use the rules explained in Sect. 11.6 and in Chap. 9 to compute all corrections
to the effective equation of motion with one and two interaction vertices. The
result (9.8) may be useful for the correction to the constant value x∗. The calculation
of the correction that is linear in x∗ may be easier in time domain, using Eqs. (8.12)
and (8.13) with m = −1 (4 points).

d) Application: TAP Approximation

Suppose we are recording the activity of N neurons. We bin the spike trains with
a small bin size b, so that the spike trains are converted into a sequence of binary
numbers ni ∈ [0, 1] in each time step for the neuron i. We would like to describe
the system by a joint probability distribution p(n1, . . . , nN) which we choose to
maximize the entropy, while obeying the constraints 〈ni〉 = mi and 〈〈ninj 〉〉 = cij ,
where the mean activity mi and the covariance cij are measured from data. The
distribution is then of the Boltzmann form [7] with the action

S(n) = ε

2
nTKn + jTn (11.43)

= ε

2

∑
k 
=l

nkKklnl +
∑

k

jknk

︸ ︷︷ ︸
S0

,

We here want to illustrate the perturbative expansion of the effective action by
diagrammatically deriving the Thouless–Anderson–Palmer (TAP) [8–10] mean-
field theory of this pairwise model with non-random couplings.

This expansion has an interesting history. It has first been systematically derived
by Vasiliev and Radzhabov [11] and was independently proposed by Thouless,
Anderson, and Palmer [8], but without proof. Later Georges and Yedidia [12]
found an iterative procedure to compute also higher order corrections, but a
direct diagrammatic derivation has been sought for some time [13, p. 28]. The
diagrammatic derivation in this exercise follows [5]. The TAP approximation plays
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an important role for spin glasses [14] and has more recently also been employed to
efficiently train restricted Boltzmann machines [15].

As in Sect. 5.5, we want to treat the system perturbatively, where the part
indicated as S0 in Eq. (11.43) is the solvable part of the theory, which is diagonal in
the index space of the units. Note that Kij only couples units with different indices
i 
= j , so we can treat Kii = 0. We consider the part εV (n) = ε

2

∑
k 
=l nkKklnl

perturbatively in ε.
We again use the double role of ji , on the one hand being source terms, on the

other being parameters. We may separate these roles by formally replacing ji →
ji + hi and setting the new ji = 0 in the end; hi then takes the role of the possibly
non-zero parameter. The calculation of the TAP mean-field theory proceeds in a
number of steps, which have partly been solved in previous exercises. They are here
given for completeness; you may use these earlier results. We here follow the recipe
given at the end of Sect. 11.3.

1. Calculate Eq. (2.8) W0(j) = ln Z0(j)−c (ignoring the inconsequential constant
c) of the solvable part (2 points).

2. Obtain the lowest order equation (11.14) of the effective action �(m), introduc-
ing the notation mi = 〈ni〉, which plays the role of x∗; which physical quantity
is �0 in this particular case? (2 points).

3. Convince yourself that �
(1)
0 (m) = j0 satisfies W

(1)
0 (j0) = m, as it should be by

the property (11.10) of the Legendre transform, i.e. �
(1)
0 =

(
W

(1)
0

)−1
(1 point).

4. Find the cumulants of the unperturbed system, required to evaluate all corrections
in �V up to second order in ε, i.e. W

(1)
0 (j) and W

(2)
0 (j); we will use the

diagrammatic notation as in the previous exercise in Sect. 5.5 on the linked
cluster theorem (1 point).

5. According to the algorithm at the end of Sect. 11.3, express the cumulants in
terms of m, by replacing j = j0 = �

(1)
0 (m), using the insight from question 3

above (2 points).

6. Determine all diagrams up to second order in ε that contribute to �(m). Here only
compute the diagrams with the features explained in Sect. 11.3. This requires
the knowledge of the cumulants W(n)(�

(1)
0 (m)) expressed in terms of m, as

obtained under point 5 above. In the perturbing part εV (n), we only have a single

interaction vertex that is quadratic in the fields, namely ε V (2)

2! = ε
2

∑
i 
=j Kij =

(4 points).
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The approximation of � up to second order of Kij should read

�(m) =
N∑

i=1

(ln(mi)mi + ln(1 − mi)(1 − mi)) − ε

2

∑
i 
=j

Kijmimj (11.44)

− ε2

4

∑
i 
=j

K2
ij mi(1 − mi) mj (1 − mj) + O(ε3).

7. Determine the equation of state equation (11.10). This will give an expression
for the parameters hi (2 points).

In Ref. [9], the authors used the Plefka expansion [16] of the free energy, where
the small parameter scales the interaction strength. They obtain a perturbative
expansion, which corresponds to the approach taken in Sect. 4.8. Doing the
approximation of Z up to second order will lead to a calculation of several pages to
reach the same result. A summary of different mean-field methods can also be found
in [13, 17]. The original works employed Ising spins si ∈ {−1, 1}. We here instead
use binary variables ni ∈ {0, 1}. The two models are mathematically identical,
because all binary state representations are bijectively linked.

*) Inverse Problem (Optional)

Here we may use the expression to solve the so-called inverse problem, which is
finding the equations for the parameters hi and Jij for given mean activity m and

covariances cij = W
(2)
ij . This problem typically arises in data analysis: We want to

construct a maximum entropy model that obeys the constraints given by the data.
Use Eq. (11.12) to exploit the connection between � and W (Fig. 11.3).

*) Appearance of Bistability (Optional)

Here we want to investigate when the system becomes bistable. This may happen,
as in the ferromagnet, if the pairwise couplings are positive on average. The
appearance of bistability in the context of the pairwise model has recently been
remarked upon [19]: It has several undesirable consequences, such as non-ergodicity
of Gibbs samplers (Glauber dynamics [18]) and the potential problem to obtain a
non-maximum entropy distribution by non-converged Boltzmann learning of the
parameters. With the presented tools, we are now in the position to quantitatively
predict when such bistability appears.

For simplicity, let us assume homogeneous statistics, i.e. mi = m and cij =
c ∀i 
= j . Consequently we have homogeneous couplings Ji 
=j = J and external
fields hi = h. So we can plot � as a function of one scalar variable, the global
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Fig. 11.3 Maximum entropy pairwise model and TAP mean-field theory. N = 10 neurons. (a)
Scatter plot of the desired mean activity of each neuron mi versus the empirical estimate mi,emp,
obtained by sampling the corresponding Glauber dynamics [18]. Assigned mean activities are
normally distributed with mean 〈mi〉 = 0.2 and standard deviation 〈m2

i 〉−〈mi〉2 = 0.05, clipped to
mi ∈ [0.05, 0.95]. (b) Scatter plot of covariances. Initial values chosen with correlation coefficients
kij ≡ cij√

mi(1−mi)mj (1−mj )
randomly drawn from a normal distribution with mean 0.05 and standard

deviation 0.03, clipped to kij ∈ [−1, 1]. (c) States as a function of time step of the Glauber
dynamics. Black: ni = 1, white: ni = 0. (d) Effective action �(m) for the homogeneous model.
From black to light gray: N = 10, 20, NC, 50, 100. Red curve: Critical value NC � 32 (see
exercise) at which the approximation of � becomes non-convex. Empirical results were obtained
from Glauber dynamics simulated for T = 107 time steps

mean activity m. We want to determine the necessary condition for the equation of
state to have two solutions, i.e. the distribution to become bimodal: The loss of strict
convexity of the approximation of �. This has recently been discussed in [19].

Derive for the homogeneous setting the equation of state and solve the inverse
problem. For the latter you may use that the inverse of a homogeneous covariance
matrix cii = m(1 − m) and ci 
=j = c is c−1

i 
=j = c
c−m(1−m)

1
m(1−m)+(N−1)c

. Now
choose the parameters K and h so that m = 0.2 and c = 0.05 · m(1 − m). Plot the
equation of state in the form �(1)(m) − h as a function of m for different numbers
of units N . Determine the necessary condition for the loss of convexity of �, i.e.
∃m : ∂

∂m
�(2)((m, ..,m)) = 0 in the approximation neglecting the TAP term, i.e.

correct to order O(K). What do you conclude for the applicability of the maximum
entropy solution for large numbers of units?
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12Expansion of Cumulants into Tree Diagrams
of Vertex Functions

Abstract

In the previous chapter we have derived an iterative procedure to construct all
contributions to the vertex-generating function. In this section we will show
that there is a simple set of graphical rules that connect the Feynman diagrams
that contribute to derivatives of the effective action �, the vertex functions, and
the derivatives of the cumulant-generating function W , the cumulants. These
relations are fundamental to many methods in field theory. The reason is that
cumulants may further be decomposed into tree diagrams in which vertex
functions play the role of the nodes of the graphs.

12.1 Definition of Vertex Functions

Graphically, we summarize the connection between Z, W , and � in Fig. 12.1.
In the same line as for the moment and cumulant-generating function, we write

� as a Taylor series, the coefficients of which we call vertex functions for reasons
that will become clear in the end of this section. These vertex functions are defined
as the n-th derivatives of the function �

�(n1,...,nN )(x∗) : = ∂
n1
1 · · · ∂nN

N �(x∗). (12.1)

Conversely, we may of course write � in its Taylor representation with δx∗
i = x∗

i −
x0,i

�(x∗) =
∑

n1,...,nN

�(n1,...,nN )(x0)

n1! . . . nN ! δx
∗n1
1 · · · δx∗nN

N , (12.2)
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Fig. 12.1 Graphical summary of the connection between Z, W , and � for the example of
a perturbation expansion around a Gaussian theory with a three-point interaction. The rows
correspond to different orders in the perturbation, the number of three-point vertices. By the
linked cluster theorem, the step from Z(j) to W(j) removes all diagrams that are disconnected;
W only contains the statistical dependence of the respective variables. Bottom row: In both cases
we get tadpole diagrams appearing as sub-diagrams. These are perturbative corrections to the first
moment, which is identical to the first cumulant, and therefore appear for Z and W alike. The
Legendre transform L from W(j) to �(x∗), which expresses all quantities in terms of the mean
value x∗ = 〈x〉(j), removes all diagrams that come about by perturbative corrections to the mean.
This makes sense, because the mean is prescribed to be x∗: In the Gaussian case, the one-line
reducible diagrams are removed, because the sub-diagram connected with a single line also appears
as a perturbative correction to the mean

where x0 is an arbitrary point around which to expand. We saw in the Gaussian case
in Sect. 11.6 that the mean value of the unperturbed Gaussian appeared naturally
in the expansion: the x∗ dependence appeared only on the external legs of the
diagrams in the form x∗ − x0.

We will now again use a graphical representation for the Taylor coefficients
that appear in Eq. (12.1), where an additional derivative by x∗

i adds a leg with
the corresponding index i to the vertex �(n) and similarly for the derivative of
W(n). Without loss of generality, let us assume that we differentiate by each
variable only once and that we can always rename the variables, so that we
differentiate by the first k variables each once. The general case can be recon-
structed from these rules by setting a certain number of variables equal, as in
Sect. 2.4.
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∂

∂x∗
1
...

∂

∂x∗
k

∗) = (k)
1,..,k = .

.
.

k

1

∂

∂x∗
k+1

.
.

.
k

1

= .
.

.
k

k+1

1

Analogously we use the graphical representation for the derivatives of W as

∂

∂jk+1
.
.

.
k

1

= .
.

.
k

k+1

1

We already know the relationship of the second derivatives, namely that the
Hessians of W and � are inverse matrices of one another (11.11)

�(2)(x∗) W(2)(�(1)(x∗)) = 1 ∀ x∗ (12.3)

�(2)(W(1)(j)) W(2)(j) = 1 ∀ j.

Graphically, this relation (12.3) can be expressed as

= 1,

where the identity operation 1 must be chosen from the appropriate space corre-
sponding to x. For distributions of an N-dimensional variable this would be the
diagonal unit matrix. In this case, the above equations must be interpreted in the
sense

∑
k

�
(2)
ik W

(2)
kl = δil . (12.4)
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In the following we will use subscripts to denote the variables with respect to
which we differentiate, for example

∂jkW = W
(1)
k .

Now let us obtain higher derivatives of Eq. (12.3) or its equivalent in matrix
notation (12.4) with respect to ∂

∂ja
: acting on W(2) we add a leg with index a, acting

on �
(2)
ik , by the chain rule, we get ∂

∂ja
�

(2)
ik (W(1)(j)) = ∑

m �
(3)
ikmW

(2)
ma , and, by the

product rule, the application to W
(2)
kl yields W

(3)
kla , so in total

0 =
∑
k,m

�
(3)
ikmW(2)

ma W
(2)
kl +

∑
k

�
(2)
ik W

(3)
kla ,

which has the graphical representation:

0 = ∂

∂ja
i l

k

=

i

a

l

k

m + i
l

a

k

We may multiply the latter expression by W
(2)
ib and sum over all i, using Eq. (12.3)

to see that this operation effectively removes the �(2) in the second term to obtain

0 =
∑
i,k,m

�
(3)
ikmW

(2)
ib W

(2)
kl W(2)

ma + W
(3)
bla . (12.5)

Graphically:

a

b

l

= − a

b

l

mi

k
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The latter expression shows that the third-order cumulant W(3) can be expressed
as a diagram that has a so-called tree structure, i.e. that it does not contain any
closed loops. This means that all closed loops that are contained in the Feynman
diagrams of the third cumulant must be contained in the vertex function �(3) and in
the lines connecting them, the W(2).

Applying the derivatives by j successively, we see that the left diagram gets one
additional leg, while in the right diagram we can attach a leg to each of the three
terms of W(2) and we can attach an additional leg to �(3) that again comes, by the
chain rule, with a factor W(2), so that the tree structure of this relation is preserved:

0 = ∂

∂jc

a

b

l

+ a

b

l

=

b

c

l

a

+
b

c

l

a

+ 2 perm.

+

b

c

l

a

We here did not write the two permutations explicitly, where the derivative acts
on the second cumulants with labels a and l. The complete expression of course
contains these two additional terms. We may express the intermediate diagram in
the second line by using the diagram for the three-point cumulant

−

b

c

l

a
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By induction we can show that the diagrams that express cumulants in terms
of vertex functions all have tree structure. We will see a proof of this assertion
in Sect. 13.6. This feature explains the name vertex functions: these functions
effectively act as interaction vertices. We obtain the cumulants as combinations of
these interaction vertices with the full propagator W(2).

The special property is that only tree diagrams contribute. We will see in the next
section that this feature is related to the expression (11.7) in the previous section:
Only the right-hand side of the expression contains an integral over the fluctuations
δx. These are therefore effectively contained in the function � on the left-hand
side. In the following section we will indeed see that fluctuations are related to
the appearance of loops in the Feynman diagrams. The absence of loops in the
Feynman diagrams of W expressed in terms of the vertex functions can therefore
be interpreted as the vertex functions implicitly containing all these fluctuations.
Technically this decomposition is therefore advantageous: We have seen that in
momentum space, each loop corresponds to one frequency integral to be computed.
Decomposing connected diagrams in terms of vertex functions hence extracts these
integrals; they only need to be computed once.

12.2 Self-energy or Mass Operator�

The connection between the two-point correlation function W(2) and the two-point
vertex function �(2), given by the reciprocity relation (12.3), is special as it does not
involve a minus sign, in contrast to all higher orders, such as for example (12.5). The
Hessian W(2)(0) is the covariance matrix, or the full propagator (sometimes called
“dressed” propagator, including perturbative corrections), of the system. It therefore
quantifies the strength of the fluctuations in the system, so it plays an important role.
One may, for example, investigate for which parameters fluctuations become large:
If the Hessian �(2) has a vanishing eigenvalue in a particular direction, fluctuations
in the system diverge in the corresponding direction. Critical phenomena, or second-
order phase transitions, are based on this phenomenon.

In the current section we consider the particular case that the solvable part of the
theory is Gaussian or that fluctuations are approximated around a stationary point,
as will be done in the next section in the loopwise approximation. In both cases,
shown for the perturbation expansion in Sects. 11.6 and 11.7, the Gaussian part of
the action also appears (with a minus sign) in the effective action (11.39), which
decomposes as

�(x∗) = −S0(x
∗) + �V (x).

So we may separate the leading order contribution to �(2) by writing

�(2) = −S
(2)
0 + �

(2)
V (12.6)

=: −S
(2)
0 + �,
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where we defined � := �
(2)
V as the correction term to the Hessian. In the context

of quantum field theory, � is called the self-energy or mass operator. The name
self-energy stems from its physical interpretation that it provides a correction to the
energy of a particle due to the interaction with the remaining system. The name
“mass operator” refers to the fact that these corrections affect the second derivative
of the effective action, the constant (momentum-independent) part of which is the
particle mass in a standard φ4 theory.

From (12.3) then follows that

1 = �(2)W(2) (12.7)

=
(
−S

(2)
0 + �

)
W(2).

We see that hence (W(2))−1 = −S
(2)
0 + �, so the full propagator W(2) results

from the inverse of the second derivative of the bare action plus the self-energy; this
explains the interpretation of � as an additional mass term: in quantum field theory,
the mass terms typically yield terms that are quadratic in the fields.

In matrix form and multiplied by the propagator � =
(
−S

(2)
0

)−1
of the free

theory from left we get

� = �
(
−S

(2)
0 + �

)
W(2)

= (1 + ��) W(2),

so that multiplying from left by the inverse of the bracket we obtain

W(2) = (1 + ��)−1 �

=
∞∑

n=0

(−��)n �

= � − ��� + ����� − . . . , (12.8)

which is a so-called Dyson’s equation. These contributions to W(2) are all tree
diagrams with two external legs. Since W(2) contains all connected graphs with
two external legs, consequentially the contributions to � all must contain two
uncontracted variables and otherwise form connected diagrams which cannot be
disconnected by cutting a single line.

It is interesting to note that if � has been determined to a certain order (in
perturbation theory or in terms of loops, see below) then the terms in (12.8) become
less and less important, since they are of increasing order.

The latter property follows from the decomposition in the last line of (12.8): The
expression corresponds to the sum of all possible graphs that are composed of sub-
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graphs which are interconnected by a single line �. Hence, these graphs can be
disconnected by cutting a single line �. Since W(2) must contain all connected
graphs with two external legs, and the sum already contains all possible such
combinations. No separable components can reside in �. This follows from the
proofs in Sect. 11.3 and Chap. 13, but can also be seen from the following argument:

W(2) is composed of all diagrams with two external legs. Any diagram can be
decomposed into a set of components that are connected among each other by
only single lines. This can be seen recursively, identifying a single line that would
disconnect the entire diagram into two and then proceeding in the same manner
with each of the two sub-diagrams recursively. The remainders, which cannot be
decomposed further, are 1PI by definition and must have two connecting points.
Writing any of the found connections explicitly as �, we see that we arrive at
Eq. (12.8).

With the help of the Dyson equation (12.8), we can therefore write the tree
decomposition of an arbitrary cumulant in Sect. 12.1 by replacing the external
connecting components, the full propagators W(2) by Eq. (12.8)

W(2) =

(12.8)= −
Σ

+
Σ Σ

− . . . .

In the case of the loopwise expansion, = = (−S(2)(x∗))−1 and = ∗)

are still functions of x∗, the true mean value. We can therefore express all quantities
appearing in Sect. 12.1 by explicit algebraic terms that all depend on x∗, the true
mean value. In the presence of sources j , the latter, in turn, follows from the solution
of the equation of state (11.10).
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Abstract

We saw in Chap. 4 that perturbation theory produces a set of graphs with
vertices V (n) and propagators � = A−1. If the interaction vertices V (n) are
proportional to a small factor ε, this factor is a natural parameter to organize
the perturbation series. In many cases this is not the case and other arrangements
of the perturbation series may have better convergence properties. We will here
study one such reorganization. This organization of the diagrammatic series
will proceed according to the power of each term in units of the magnitude of
fluctuations. This formulation is in particular suitable to study non-vanishing
mean values of the stochastic variables and is therefore a central tool in quantum
field theory and statistical field theory, in particular in the study of phase
transitions.

13.1 Motivation and Tree-Level Approximation

The current chapter loosely follows [1, Sec. 6.4], [2, Sec. 2.5], and [3, Sec. 3.2.26].
To illustrate the situation, we again consider the example of the “φ3 +φ4”-theory

with the action

S(x) =l

(
−1

2
x2 + α

3!x
3 + β

4!x
4
)

(13.1)

with β < 0, l > 0 and α arbitrary. We now assume that there is no small parameter
ε scaling the non-Gaussian part. Instead, we may assume that there is a parameter
l, multiplying the entire action. Figure 11.2a shows the probability for different
values of the source j , with a maximum monotonically shifting as a function of
j . The mean value 〈x〉 may be quite far away from 0 so that we seek a method
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to expand around an arbitrary value x∗ = 〈x〉. The peak of the distribution can
always be approximated by a quadratic polynomial. One would guess that such an
approximation would be more accurate than the expansion around the Gaussian part
− 1

2x2, if the peak is far off zero.
In many cases, corrections by fluctuations may be small. We saw a concrete

example in Sect. 11.1. We will see in the following that small fluctuations
correspond to l being large. To see this, we express the cumulant-generating function
in terms of an integral over the fluctuations of x, as in Eq. (11.6)

exp (W(j) + lnZ(0)) =
∫

dx exp
(
S(x) + jTx

)
, (13.2)

where we moved the normalization to the left-hand side. We expect the dominant
contribution to the integral on the right of equation (13.2) from the local maxima of
S(x) + jTx, i.e. the points x∗

S(j) at which S(1)(x∗
S) + j = 0 and S(2)(x∗

S) < 0. At
these points the action including the source term is stationary

∂

∂x

(
S(x) + jTx

) != 0

S(1)(x∗
S) + j = 0, (13.3)

which implicitly defines the function x∗
S(j). Inserted into the integral, we obtain the

lowest order approximation

W0(j) + lnZ(0) =S(x∗
S(j)) + jTx∗

S(j), (13.4)

because the fluctuations of x will be close to x∗
S . The normalization of this

distribution will give a correction term, which however is ∝ l−1 as we will see in
the next section. So to lowest order we can neglect it here. In the limit l → ∞
the entire probability mass is concentrated at the point x = x∗

S . The accuracy
of this approximation increases with l. It corresponds to our naive mean-field
solution (11.1) in the problem of the recurrent network.

Together with the condition (13.3), (13.4) has the form of a Legendre transform,
but with a different sign convention than in Eq. (11.9) and with the inconsequential
additive constant lnZ(0). So to lowest order in the fluctuations, the cumulant-
generating function is the Legendre transform of the action. Since we know that the
Legendre transform is involutive for convex functions, meaning applied twice yields
the identity, we conclude with the definition of � by Eq. (11.9) as the Legendre
transform of W that to lowest order in l we have

�0(x
∗) − lnZ(0) = −S(x∗) ∝ O(l). (13.5)

(More precisely: �0 is the convex envelope of −S, because the Legendre transform
of any function is convex, see Sect. 11.9.)
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This approximation is called tree-level approximation, mean-field approxima-
tion, or stationary phase approximation: Only the original interaction vertices of
−S appear in �. The name “tree-level approximation” can be understood from the
fact that only tree diagrams contribute to the mean value of 〈x〉(j), as shown in
Sect. 13.5. We also see from (13.2) that we replaced the fluctuating x by a non-
fluctuating mean value xS , giving rise to the name “mean-field” approximation.
In our example in Sect. 11.1, the equation of state (11.10) is identical to this
approximation that neglects all fluctuations, cf. (11.1).

In the following, we want to obtain a systematic inclusion of fluctuations. We will
extend the principle of the previous sections to obtain a systematic expansion of the
fluctuations in Gaussian and higher order terms around an arbitrary point x∗. In the
context of field theory, this method is known as the background field expansion [4,
section 3.2.26], the formal derivation of which we loosely follow here.

13.2 Counting the Number of Loops

Before deriving the systematic fluctuation expansion, we will here make the link
between the strength of fluctuations and another topological feature of Feynman
diagrams: their number of loops. For simplicity, let us first consider a problem with
a Gaussian part − 1

2xTAx and a perturbing potential V (x) of order x3 and higher.
Let us further assume that A and V are both of the same order of magnitude. We
introduce a parameter l to measure this scale.

For large l, fluctuations of x, measured by δx = x − 〈x〉, are small and we have
δx ∝ 1/

√
l. This is because for small δx, the quadratic part − 1

2xTAx dominates
over V (x) which is of higher than second order in x; further, because the variance
is 〈δx2〉 = A−1 ∝ l−1. We here seek an expansion around these weak fluctuations
of the integral

W(j) ∝ ln
∫

dx exp

(
−1

2
xT A x + V (x) + jTx

)
(13.6)

= ln
∫

dx exp

(
−1

2
xT l a x + l v(x) + jTx

)

around x = 0, where we defined a = A/l and v = V/l to make the order of A and
V explicit.

Let us first make a simple observation to see that the scale l penalizes con-
tributions from contractions with a high power of x. Since the fluctuations are
δx ∝ 1/

√
l, the contribution of a diagram whose summed power of x in all vertices

is xn will be ∝ l−n/2 (for n even), because each contraction of a pair of x yields a
factor l−1. This can be seen from the substitution

√
lx ≡ y (neglecting the change

of the determinant l− N
2 , which just yields an inconsequential additive correction
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to W(j))

W(j) ∝ ln
∫

dy exp

(
−1

2
yT a y + l v

( y√
l

)+ jT y√
l

)

and then considering the form of the contribution of one graph (assuming j = 0) of

the form
∑

n1+...+nk=n l v(n1)

n1! · · · l v(nk)

nk ! 〈 yn

l
n
2
〉 ∝ lk− n

2 . Since each contraction 〈yy〉 ∝
a−1 = O(1) corresponds to one propagator, i.e. one line in the graph, we can also
say that the contribution is damped by lk−n� , where n� is the number of lines in the
graph and k is the number of vertices.

We can see this relation also directly on the level of the graphs, illustrated in
Fig. 13.1. The parameter l scales the propagators and the vertices in the Feynman
graphs differently. The propagator is � = (la)−1 = 1

l
a−1 ∝ l−1, a vertex lv(n) ∝ l.

To make the link to the topology of the graph, we construct a connected diagram
with nV vertices and nj external legs. We first connect these legs to vertices, each
yielding a contribution ∝ 1

l
due to the connecting propagator. We now need to

connect the nV vertices among each other so that we have a single connected
component. Otherwise the contribution to W would vanish. This requires at least
n

int,min
� = nV − 1 internal lines, each coming with one factor l−1. By construction,

the formed graph so far has no loops, so nL = 0. Now we need to contract
all remaining legs of the vertices. Each such contraction requires an additional
propagator, coming with a factor l−1 and necessarily produces one additional loop
in the graph, because it connects to two vertices that are already connected. We

a)

V (3)

∆

j

nV = 2

n int.∆ = 0
nL = 0
n j = 1

b)

∆

∆

V (3)

j

V (4)

nV = 2

n int.∆ = 1

nL = 0 = n int.∆ − nV + 1
n j = 1

c)

∆

∆

∆

∆

V (3)

j

V (4)

nV = 2

n int.∆ = 3

nL = 2 = n int.∆ − nV + 1
n j = 1

Fig. 13.1 Stepwise construction of a connected diagram. Steps of constructing a connected graph
of nV vertices with nj external legs. (a) Assignment of external legs to vertices, requiring next.

� =
nj external lines. (b) Connection of all vertices into one component, requiring nint.

� = nV −1 lines.
(c) Contraction of all remaining free legs of the vertices. The number of loops in the diagrams in
(b) and (c) is nL = nint

� − nV + 1
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therefore see that the number of loops equals

nL = nint
� − nV + 1.

The prefactor of a graph is hence

lnV −nint
� l−nj = l1−nL−nj .

This shows two things: First, noticing that the number of external legs equals the
order of the cumulant, cumulants are damped by the factor l−nj in relation to their
order; this term just stems from the nj external legs, each of which being connected
with a single propagator. Second, for a given order of the cumulant to be calculated,
we can order the contributions by their importance; their contributions diminish with
the number nL of the loops in the corresponding graphs. The latter factor stems from
the amputated part of the diagram—the part without external legs.

The loopwise approximation can be illustrated by a one-dimensional integral
shown in Fig. 13.2 that is calculated in the exercises: The loop corrections converge
towards the true value of the integral for l � 1. The two-loop approximation has a
smaller error in the range l � 1 than the one-loop approximation.

−5 0 5
x

−5

0

S
l( x

)

a

−5 0 5
x

0

1

p(
x)

b

01 10 20

l

0

1

W
l

c

01 10 20

l

0

1

ε(
W

l)

d

Fig. 13.2 Loopwise expansion for the action “φ3 + φ4” theory. (a) Action Sl(x) =
l
(

1
2 x2 + α

3!x
3 + β

4!x
4
)

, from black (l = 0.1 to light gray l = 20). (b) Probability p(x) =
eSl (x)−Wl . (c) Normalization given by Wl = ln

∫
dx exp(Sl(x)) from numerical integration (black)

and zero loop approximation (Wl = 1, gray dotted), one-loop approximation (gray dashed), and
two-loop approximation (gray solid) (see exercises). (d) Error of one-loop (gray), and two-loop
approximation (black). Other parameters: α = 3

2 , β = −1
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13.3 Loopwise Expansion of the Effective Action: Higher
Number of Loops

In this section, we will use the loopwise expansion of Sect. 13.2 to systematically
calculate the corrections to �. To lowest order we already know from Eq. (13.5) that
�0(x

∗) = −S(x∗) + lnZ(0). With the general definition (11.9) of �, Eq. (11.7)
takes the form

exp
(−�(x∗) + lnZ(0)

) =
∫

dδx exp
(
S(x∗ + δx) + jTδx

)
. (13.7)

To lowest order in the fluctuations, we set δx = 0, leading to the same result
as (13.5). We now set out to derive an iterative equation to compute �, where the
iteration parameter is the number of loops in the diagrams. We use the equation of
state equation (11.10) to replace j (x∗) in the latter equation to obtain

exp
(−�(x∗) + lnZ(0)

) =
∫

dδx exp
(
S(x∗ + δx) + �(1)T(x∗) δx

)
. (13.8)

Now let us expand the fluctuations of x around x∗. We perform a Taylor expansion
of the action around x∗

S(x∗ + δx) = S(x∗) + S(1)(x∗) δx + 1

2
δxTS(2)(x∗)δx + R(x∗, δx). (13.9)

Here all terms in the expansion higher than order two are contained in the remainder
term R(x∗, δx). Inserting Eq. (13.9) into Eq. (13.7), we get

exp
(−�(x∗) − S(x∗) + lnZ(0)

)
(13.10)

=
∫

dδx exp
((

S(1)(x∗) + �(1)T(x∗)
)
δx + 1

2
δxTS(2)(x∗)δx + R(x∗, δx)

)
,

where we sorted by powers of δx on the right side and moved the term S(x∗), which
is independent of δx, to the left. Since by Eq. (13.5) to lowest order �0 − lnZ(0) =
−S we now define the corrections due to fluctuations on the left-hand side as

�fl(x∗) := �(x∗) + S(x∗) − lnZ(0). (13.11)

The first term on the right-hand side of equation (13.10) can therefore be written as
∂

∂x∗ (S(x∗) + �(x∗)) ≡ �
(1)
fl (x∗) (since lnZ(0) is independent of x∗), so that we

obtain the final result

exp
(−�fl(x∗)

) =
∫

dδx exp

(
1

2
δxTS(2)(x∗)δx + R(x∗, δx) + �

(1)T
fl (x∗) δx

)
.

(13.12)
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This equation implicitly determines �fl; it shows that the assumed additive
decomposition (13.11) into the tree level part and the fluctuation corrections leads
to a useful equation, one that only contains �fl and parts of the action, which define
the system at hand.

The latter expression allows us to again use the reorganization of the loopwise
expansion (Sect. 13.2) for the calculation of �, sorting the different terms by their
importance in contributing to the fluctuations.

Comparing Eq. (13.6) and Eq. (13.12), we identify the terms

S(2)(x∗) ≡ −A

R(x∗, δx) ≡ V (δx)

∂�fl

∂x∗ (x∗) ≡ j.

We can therefore think of Eq. (13.12) as an effective quadratic theory with free
part A given by −S(2), a small perturbing potential V given by R, and a source j

given by ∂�fl/∂x∗. From this identification by the linked cluster theorem (Sect. 5.2),
all connected diagrams that are made up of the propagators (lines) � = A−1 =(−S(2)(x∗)

)−1
, vertices V (x) = R(x∗, x), and “external lines” j = ∂�T

fl
∂x∗ (x∗)

contribute to �fl; the latter are of course unlike the external lines appearing in W ,

since
∂�T

fl
∂x∗ corresponds to a sub-diagram, as we will see below.

We now seek an approximation for the case that the integral is dominated by
a narrow regime around the maximum of S close to x∗ in the same spirit as in
Sect. 13.2. This is precisely the case, if the exponent has a sharp maximum; formally
we may think of an intrinsic scale l � 1 present in the action. We will introduce
this scale as a parameter l and rewrite Eq. (13.12) as

−lγfl(x∗) = ln
∫

dδx exp

(
l
(1

2
δxTs(2)(x∗)δx + r(x∗, δx) + γ

(1)T
fl (x∗) δx

))
,

(13.13)

where we defined s(2) := S(2)

l
, r := R

l
, and γfl := �fl

l
. As before, we will use

l as an expansion parameter. We remember from Sect. 13.2 that a diagram with
nL = n�−nV +1 loops has a prefactor lnV −n� = l1−nL . So the overall contribution
to the integral diminishes with the number of loops. Note that the external legs are
gone here, because there is no source term in (13.12), thus also nj ≡ 0.

Let us first imagine the term lγ
(1)
fl δx was absent on the right-hand side. The

integral would then generate all connected Feynman diagrams with the propagator
1
l

[−s(2)
]−1

and the vertices in lr . Due to the logarithm, by the linked cluster
theorem, only connected diagrams contribute in which all legs of all vertices are
contracted by propagators. The l-dependent factor of each such diagram would
hence be lnV −n� = l1−nL , which counts the number of loops nL of the diagram.
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Due to the prefactor l on the left-hand side of equation (13.13), the contribution of
a graph with nL loops to γfl comes with a factor l−nL .

To find all contributing graphs, our reasoning will now proceed by induction in
the number of loops and we successively compute

γ 0
fl , γ 1

fl , γ 2
fl , . . .

with the given number of loops in the superscript as γ
nL

fl .
To zero-loop order, we already know that � − lnZ(0) = −S, so γ 0

fl = 0.

Proceeding to all one-loop contributions to γ 1
fl , we can therefore drop the term γ

0(1)
fl .

Since the vertices in R, by construction, have three or more legs, they only yield
connected diagrams with two or more loops. The only contribution we get is hence
the integral over the Gaussian part of the action, i.e.

γ 1
fl (x∗) = − 1

l
ln
∫

dδx exp

(
1

2
δxTls(2)(x∗)δx

)
(13.14)

= − 1

l
ln

(√
(2π)N det(−S(2)(x∗)−1)

)
,

�1
fl(x∗) = lγ 1

fl (x∗) =1

2
ln
(
(2π)−N det(−S(2)(x∗))

)
,

where N is the dimension of x and the last step follows, because det(A)−1 =∏
i λ−1

i = det(A−1). Recalling that S(2) = ls(2) we now see that the one-loop
correction grows as O(ln(l)), which is smaller than O(l) of the zeroth order
equation (13.5), a posteriori justifying our lowest order approximation.

In the context of quantum mechanics, the approximation to one-loop order is also
called semi-classical approximation, because it contains the dominant quantum
fluctuation corrections if the system is close to the classical limit; in this case h̄

plays the role of the expansion parameter l−1 [see also 1].
As in Chap. 12, we denote the function �(x∗) by a hatched circle and each

derivative adds one external leg to the symbol, so that the term γ
(1)
fl = ∂x∗γfl is

denoted by

∂x∗γfl =

We will now make the iteration step. Assume we have calculated the contribu-
tions to γ

nL

fl up to loop order nL. The integral in Eq. (13.13) produces contributions
at loop order nL + 1 of two different types:

1. All vacuum diagrams (no external legs) made up of nV vertices in lr and n�

propagators
(−ls(2)

)−1
with nL + 1 = n� − nV + 1.
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2. All diagrams made of a sub-graph of nL1 loops composed of nV vertices from

lr and n� propagators
(−ls(2)

)−1
with nL1 = n� − nV + 1 and the graphs of

loop order nL2 ≤ nL already contained in γ
nL

fl , so that nL1 + nL2 = nL + 1:

The term lγ
(1)T
fl δx = l

∑N
a=1

∂γfl
∂x∗

a
δxa allows the contraction of the δxa by the

propagator to some other δxl belonging to a vertex. For the example of nL1 = 1
and nL2 = nL one such contribution would have the graphical representation:

subgraph made of , r subgraph of nL2 < nL loops in γ
(nL)
fl

(−ls(2))−1

(−ls(2))−1

l r(3)

3! (−1)l

nL1 = 1 nL2 loops

Since the left portion of the diagram must have one or more loops and the factor
l−1 from the connecting propagator (−l s(2))−1 cancels with the factor l from l γ

(1)
fl ,

we see that we only need diagrams with nL or less loops on the right. So the
iteration is indeed closed: We only need in the nL + 1 step diagrams that we already
calculated.

We see that a derivative ∂x∗
k

attaches one leg with index k. The terms contained
in γfl are diagrams, where the legs of all vertices are contracted by propagators. The
derivative by x∗ may act on two different components of such a diagram: a vertex

S(n)(x∗) = l s(n)(x∗), n > 2, or a propagator �(x∗) = (−l s(2)(x∗)
)−1

; this is
because both depend on x∗. Note that the x∗ dependence of these terms is the point
around which the expansion is performed. The typical portion of such a diagram
around a vertex s(n) therefore has the form

· · ·S(n)
1···n(x

∗) �n
i=1�i ki (x

∗) · · · , (13.15)

where each of the legs 1, . . . , n of the vertex S(n) is connected to a single propagator
�. The other end of each of these propagators is denoted by the indices k1, . . . , kn.
Without loss of generality, we assume ascending indices of the first vertex. Applying
the derivative ∂x∗

a
to this diagram, the indicated portion (13.15) will lead to the

contributions

· · · ∂x∗
a

{
S

(n)
1···n(x

∗) �n
i=1�i ki (x

∗)
}

· · · (13.16)

= · · · S(n+1)
1···n a (x∗) �n

i=1�i ki (x
∗) · · ·

+ · · ·S(n)
1···n(x

∗)
n∑

j=1

{
�i 
=j�i ki (x

∗)
}
∂x∗

a
�j kj (x

∗) · · · .
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The first term in the second last line adds one leg a to the vertex, therefore
converting this vertex from an n-point to an n + 1 point vertex. To see the graphical
representation of the last line, we rewrite the derivative ∂x∗

a
�mj kj (x

∗) by expressing

the propagator � = − (S(2)
)−1

, differentiating � S(2) = −1 and treat � as a matrix
in its pair of indices. Differentiating the identity yields

∂x∗
a

{
� S(2)

}
= 0

(
∂x∗

a
�
)
S(2) + � ∂x∗

a
S(2)

︸ ︷︷ ︸
S(3)

= 0

∂x∗
a
�kl =

(
� S(3)◦a◦ �

)
kl

,

showing that the derivative of the propagator is transformed into a three-point vertex
that has one leg labeled a and is, by the pair of propagators, connected to the
remaining part of the diagram. The meaning of the last expression is the conversion
of the connecting line between mj and kj into a connecting line between each index
mj and kj to a different leg of the three-point vertex S(3), which, in addition, has
another leg a.

Thus the differentiation of the portion of the graph in Eq. (13.16), for the example
of n = 3, takes on the diagrammatic representation

∂x∗
a
. . .

1

2

3

. . . = . . .

1 2

3 a

. . . + . . .

1

a

2

3

. . . + 2 perm.

We first note that the contribution produced by step 2 comes with a minus sign.
This minus sign comes from the definition of γfl in Eq. (13.13): every diagram
that is contained in γfl gets a negative sign. The diagrams composed in step 2,
that have one component from γfl and the remainder formed by propagators and
vertices, thus inherit this negative sign. The vacuum diagrams that are composed
only of propagators and lines, produced by step 1, have the opposite sign. Second,
we realize that the contributions of the terms 2 have the property of being one-
line reducible (also called one-particle reducible), which means that the diagram
can be disconnected by cutting a single line, namely the line which connects the
two sub-graphs. Third, we see that the power in l of the latter contribution is
l−(nL1 +nL2 −1+1) = l−(nL+1), because the factor l−1 in the connecting propagator
and the factor l in l∂xγ T

fl δx cancel each other. So the power is the same as an nL + 1
loop contribution constructed from step 1. In conclusion we see that the graphs
constructed by step 2 cancel all one-particle reducible contributions constructed by
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step 1, so that only one-line irreducible (or one-particle irreducible, 1PI) graphs
remain in γfl.

Coming back to our initial goal, namely the expansion of the vertex-generating
function in terms of fluctuations centered around the mean value, we see again
how the term l∂xγflδx successively includes the contribution of fluctuations to the
effective value of the source jfl(x∗) = l∂xγfl that is required to reach the desired
mean value x∗ = 〈x〉 in the given approximation of γfl. In conclusion we have
found

�(x∗) − lnZ(0) = −S(x∗) + �fl(x∗),

�fl(x∗) = 1

2
ln
(
(2π)−N det(−S(2)(x∗))

)
−
∑
1PI

∈ vacuum graphs(�,R),

�(x∗) = −
[
S(2)(x∗)

]−1
,

where the contribution of a graph to �fl declines with the number of its loops.
If we are interested in the n-point vertex function, we may directly calculate

it from the diagrams with n legs . We see from the consideration above in
Eq. (13.16) that the differentiation by x∗ may attach a leg either at a vertex contained
in R or it may insert a three-point vertex into a propagator.

The combinatorial factor of a diagram contributing to �(n) with n external legs
, is the same as for the diagrams contributing to W(n) with n external legs j :

Since an external line j in a contribution to W also connects to one leg of an
interaction vertex, just via a propagator, the rules for the combinatorial factor must
be identical. In the following example we will see how to practically perform the
loopwise approximation for a concrete action.

13.4 Example: φ3 + φ4-Theory

Suppose we have the action

Sl(x) = l

(
−1

2
x2 + α

3!x
3 + β

4!x
4
)

,

with a parameter l > 0 and possibly l � 1, so that fluctuations are small.
We start with the zero loop contribution, which by Eq. (13.11) is

�0(x∗) − lnZ(0) = −Sl(x
∗) = l

(
1

2
x∗2 − α

3!x
∗3 − β

4!x
∗4
)

. (13.17)
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To obtain the corrections due to fluctuations collected in �fl according to

Eq. (13.12), we need to determine the effective propagator
(
−S

(2)
l

)−1
as

S
(2)
l (x∗) = l

(
−1 + αx∗ + β

2
x∗2
)

(13.18)

�(x∗) = −
(
S

(2)
l (x∗)

)−1 = 1

l
(

1 − αx∗ − β
2 x∗2

) .

The one-loop correction is therefore given by the Gaussian integral (13.14) appear-
ing in Eq. (13.12), leading to

�1
fl(x∗) = ln

√
−S

(2)
l (x∗)
2π

= 1

2
ln

⎛
⎝ l
(

1 − αx∗ − β
2 x∗2

)

2π

⎞
⎠ . (13.19)

The interaction vertices are

1

3!S
(3)
l (x∗) = 1

3!
(
αl + βlx∗) (13.20)

1

4!S
(4)
l = 1

4!βl

S
(>4)
l = 0.

Suppose we are only interested in the correction of the self-consistency equation
for the average 〈x〉, given by the solution to the equation of state (11.10), ∂�/∂x∗ =
j = 0 in the absence of fields. We have two possibilities: Either we calculate the
vertex function �1

fl to first order, given by (13.19) and then take the derivative. This
approach yields

∂�1
fl

∂x
= 1

2

l (−α − βx∗)
l
(

1 − αx∗ − β
2 x∗2

) . (13.21)

Note that this contribution is indeed O(1) in l, even though before differentiation,
the one-loop correction is O(ln l).

Alternatively, we may calculate the same contribution directly. We therefore only
need to consider those 1PI diagrams that have one external leg (due to the derivative
by x) and a single Gaussian integral (one loop). The only correction is therefore a
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tadpole diagram including the three-point vertex (13.20) and the propagator (13.18)

1
fl

∂x
= −3 ·

= −3 −S
(2)
l

−1 1

3!S
(3)
l

= 1

2

αl + βlx∗

l −1 + αx∗ + β
2 x∗2

,

where the combinatorial factor is 3 (three legs to choose from the three-point vertex
to connect the external leg to and 1/3! stemming from the Taylor expansion of the
action), which yields the same result as (13.21). Both corrections are of order O(1)

in l. So in total we get at 1 loop order with −S
(1)
l (x∗) = l

(
x∗ + α

2!x
∗2 + β

3!x
∗3
)

the

mean value x∗ as the solution of

0 = j = �(1)
1 loop order� −S(1)(x∗) + �

(1)
fl (x∗)

= l

(
x∗ − α

2!x
∗2 − β

3!x
∗3
)

+ 1

2

α + βx∗

−1 + αx∗ + β
2 x∗2

.

The tree-level term is here O(l), the one-loop term O(1). The two-loop corrections
O(l−1) are calculated in the exercises. The resulting approximations of � are shown
in Fig. 11.2.

13.5 Appendix: Equivalence of Loopwise Expansion
and Infinite Resummation

To relate the loopwise approximation to the perturbation expansion, let us assume a
setting where we expand around a Gaussian

S(x) = l
(

− 1

2
xTAx + εV (x)

)
. (13.22)

To relate the two approximations, we now have both expansion parameters, l and ε.
Here ε just serves us to count the vertices, but we will perform an expansion in l.
For the tree-level approximation (13.5), the equation of state (11.10) takes the form

j
(11.10)= ∂�0(x

∗)
∂x∗

(13.5)= −∂S(x∗)
∂x∗

= l
(
A x∗ − εV (1)(x∗)

)
.
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We may rewrite the last equation as x∗ = A−1j/l + A−1εV (1)(x∗) and solve it
iteratively

x∗
0 = A−1j/l (13.23)

x∗
1 = A−1j/l + A−1ε V (1)(A−1j/l︸ ︷︷ ︸

≡x0

)

x∗
2 = A−1j/l + A−1ε V (1)(A−1j/l + A−1ε V (1)(A−1j/l)︸ ︷︷ ︸

≡x1

)

...

Diagrammatically we have a tree structure, which for the example (13.1) and setting
β = 0 would have εV (x) = α

3!x
3 so εV (1)(x) = 3 · α

3!x
2, where the factor 3 can

also be regarded as the combinatorial factor of attaching the left leg in the graphical
notation of the above iteration

x∗ = j/ l + j/ l

j/ l
+ 2 ·

j/ l

j/ l

j/ l

+

j/ l

j/ l

j/ l

j/ l

+ . . . ,

justifying the name “tree-level approximation.” We see that we effectively re-sum an
infinite number of diagrams from ordinary perturbation theory. We may also regard
x∗ = W(1) and hence conclude that W in this approximation corresponds to the
shown graphs, where an additional j is attached to the left external line.

This property of resummation will persist at higher orders. It may be that such a
resummation has better convergence properties than the original series.

We may perform an analogous computation for any higher order in the loopwise
approximation. We will exemplify this here for the semi-classical approximation
or one-loop corrections. To this end it is easiest to go back to the integral expression
Eq. (13.14) in the form

�1
fl(x∗) = − ln

∫
dδx exp

(
1

2
δxT S(2)(x∗) δx

)
(13.24)
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and assume an action of the form Eq. (13.22). So we have S(2)(x) = −lA +
εlV (2)(x) and hence (13.24) takes the form

�1
fl(x∗) = − ln

∫
dδx exp

(
−1

2
δxT lA δx + ε

2
δxT lV (2)(x∗) δx

)
.

We may consider = l−1A−1 = as the propagator and the second quadratic
term as the interaction ε

2 δxT lV (2)(x∗) δx = , which is a two-point vertex;
this partitioning is of course artificial and made here only to expose the link to
the perturbation expansion. Due to the logarithm we only get connected vacuum
diagrams. A connected diagram with k vertices and all associated δx being
contracted necessarily has a ring structure. Picking one of the vertices and one of its
legs at random, we have k − 1 identical other vertices to choose from and a factor 2
to select one of its legs to connect to. In the next step we have 2 (k − 2) choices so
that we finally arrive at

2k−1(k − 1)!

k=4 vertices

.

Since each vertex comes with ε
2 and we have an overall factor 1

k! , we get

�1
fl(x∗) = −1

2
ln ((2π)N det(lA)−1)︸ ︷︷ ︸

const.(x∗)

−1

2

∞∑
k=1

εk

k
tr
(
(A−1V (2)(x∗))k

)
︸ ︷︷ ︸

k terms V (2)

, (13.25)

where the latter term is meant to read (on the example k = 2) tr A−1V (2)A−1V (2) =∑
i1i2i3i4

(A−1)i1i2V
(2)
i2i3

(A−1)i3i4V
(2)
i4i1

, etc., because the propagator A−1
ik contracts

corresponding δxi and δxk associated with the terms δxiV
(2)
ik δxk .

We make three observations:

• In each term, the vertices form a single loop.
• We get a resummation of infinitely many terms from perturbation theory, had we

expanded the action around some non-vanishing x∗.
• The latter term in (13.25) has the form of the power series of ln(1 − x) =∑∞

n=1
xn

n
, so we can formally see the result as ln(−S(2)) = ln(lA − lεV (2)) =

ln lA + ln(1 − A−1εV (2)) = ln lA +∑∞
k=1

(A−1εV (2))k

k
. Further one can use that

det(−S(2)) = �iλi with λi the eigenvalues of −S(2) and hence ln det(M) =∑
i ln λi = tr ln(M), because the trace is invariant under the choice of the basis.
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• The x∗-dependence in this case is only in the V (2)(x∗). A instead is independent
of x∗. A correction to the equation of state would hence attach one additional leg
to each term in these factors, converting V (2) → V (3)

13.6 Appendix: Interpretation of � as Effective Action

We here provide a formal reasoning why � is called “effective action,” following [5,
section 16.2]. To this end let us define the cumulant-generating function W�

exp(l W�,l(j)) :=
∫

dx exp
(
l
(− �(x) + jTx

))
, (13.26)

where we use the effective action −� in place of the action S. We also introduced
an arbitrary parameter l to rescale the exponent. The quantity W�,l does not have
any physical meaning. We here introduce it merely to convince ourselves that � is
composed of all one-line irreducible diagrams. As in Sect. 13.3, it will serve us to
organize the generated diagrams in terms of the number of loops involved.

For large l � 1, we know from Sect. 13.3 that the dominant contribution to the
integral on the right side of equation (13.26) originates from the points at which

∂

∂x

(
−�(x) + jTx

) != 0

∂�

∂x
= j,

which is the equation of state (11.10) obtained earlier for the Legendre transform.
In this limit, we obtain the approximation of Eq. (13.26) as

W�,l→∞(j) = sup
x

jTx − �(x),

which shows that W�,l approaches the Legendre transform of �. Since the Legendre
transform is involutive (see Chap. 11), we conclude that W�,l→∞ → W(j) becomes
the cumulant-generating function of our original theory. This view explains the
name effective action, because we obtain the true solution containing all fluctuation
corrections as the x that minimizes � in the same way as we obtain the equations of
motion of a classical problem by finding the stationary points of the action.
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The property of one-line irreducibility now follows from Sect. 13.3 that to lowest
order in l only tree-level diagrams contribute: The zero loop approximation of an
ordinary action replaces �0(x

∗)− lnZ(0) = −S(x∗), which contains all vertices of
the original theory. The equation of state, as shown in Sect. 13.5, can be written as
all possible tree-level diagrams without any loops.

Applied to the integral equation (13.26), which at lowest order is the full theory
including all connected diagrams with arbitrary number of loops, we see that all
these contributions are generated by all possible tree-level diagrams composed of
the components of �. Expanding �(x∗) around an arbitrary x0 we get from the
equation of state (11.10)

j − �(1)(x0) = δj = �(2)(x0)︸ ︷︷ ︸
=(W(2))−1

(x∗ − x0) +
∞∑

k=3

1

k − 1!�
(k)(x0)(x

∗ − x0)
k−1.

We can therefore solve the equation of state in the same iterative manner as
in (13.23) with δx := x∗ − x0

δx0
i = W

(2)
ik δjk

δx1
i = W

(2)
ik δjk − 1

2!�
(3)
ikl W

(2)
kn W

(2)
lm δjnδjm,

...

where sums over repeated indices are implied.
The connections in these diagrams, in analogy to Eq. (13.12), are made by the

effective propagator (�(2))−1 = W(2) (following from Eq. (12.3)), which are lines
corresponding to the full second cumulants of the theory. The vertices are the higher
derivatives of �, i.e. the vertex functions introduced in Eq. (12.1).

This view is therefore completely in line with our graphical decomposition
developed in Chap. 12 and again shows the tree decomposition of W into vertex
functions. On the other hand, we may write down all connected diagrams directly
that contribute to the expansion of δx = W(1). Comparing the two, we realize that
the components of � can only be those diagrams that are one-line irreducible, i.e.
that cannot be disconnected by cutting one such line, because otherwise the same
diagram would be produced twice.

13.7 Appendix: Loopwise Expansion of Self-consistency
Equation

We here come back to the example from Sect. 11.1 that motivated the derivation of
self-consistency equations by the effective action. In the initial section, we treated
this problem by an ad hoc solution. We want to investigate this problem now with
the help of the developed methods.
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Let us obtain the loopwise approximation for the one-dimensional self-
consistency equation

x = J0φ(x)︸ ︷︷ ︸
=:ψ(x)

+μ + ξ. (13.27)

We need to construct the moment-generating function. We define a function f (x) =
x − ψ(x) − μ so that we may express x as a function of the noise realization x =
f −1(ξ). We can define the moment-generating function

Z(j) = 〈exp(j f −1(ξ)︸ ︷︷ ︸
x

)〉ξ

= 〈
∫

dx δ(x − f −1(ξ)) exp(j x)
〉
ξ
, (13.28)

where in the last step we introduced the variable x explicitly to get a usual source
term.

Since the constraint is given by an implicit expression of the form f (x) = ξ ,
with f (x) = x − ψ(x) we need to work out what δ(f (x)) is. To this end, consider
an integral with an arbitrary function g(x), which follows from substitution as

∫
g(x) δ(f (x)︸︷︷︸

=:y
) dx =

∫
g(f −1(y)) δ(y)

1

| dy
dx

| dy

=
∫

g(f −1(y)) δ(y)
1

|f ′(f −1(y))| dy = g(f −1(0))

|f ′(f −1(0))|

implying that

δ(f (x) − ξ) |f ′(x)| → δ(x − f −1(ξ)). (13.29)

We can therefore rewrite (13.28) as

Z(j)
(13.29)= 〈 ∫

dx |f ′(x)| δ(f (x) − ξ) exp(j x)
〉
ξ
, (13.30)

which satisfies Z(j) = 1 as it should. We now resolve the Dirac-δ constraint by the
introduction of an auxiliary field x̃ and represent the Dirac-δ in Fourier domain as

δ(x) = 1

2πi

∫ i∞

−i∞
ex̃ x dx̃.
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We get

Z(j) (13.31)

=
∫ ∞
−∞

dx

∫ i∞
−i∞

dx̃

2πi
|1 − ψ ′(x)| exp

(
x̃ (x − ψ(x)) − μ x̃ + j x

) 〈exp(−x̃ξ )〉ξ︸ ︷︷ ︸
≡Zξ (−x̃)=exp( D

2 x̃2)

,

where we identified the moment-generating function of the noise in the underbrace
and inserted f ′ = 1 − ψ ′. We notice that μ couples to x̃ in a similar way as a
source term. We can therefore as well introduce a source j̃ and remove μ from the
moment-generating function

Z(j, j̃) :=
∫ ∞

−∞
dx

∫ i∞

−i∞
dx̃

2πi
|1 − ψ ′(x)| exp(S(x, x̃) + jx + j̃ x̃) (13.32)

S(x, x̃) := x̃ (x − ψ(x)) + D

2
x̃2.

The additional term |1 − ψ ′(x)| can be shown to cancel all loop diagrams that have
a closed response loop—a directed propagator that connects back to the original
vertex; these diagrams need to be left out.

In determining the solution in the presence of μ, we need to ultimately set j̃ =
−μ.

We see from this form a special property of the field x̃: For j = 0 and j̃ ∈ R

arbitrary we have due to normalization of the distribution Z(0, j̃ ) = 1 = const(j̃ ).
Consequently,

〈x̃n〉∣∣
j=0 ≡ ∂nZ(0, j̃ )

∂j̃ n
= 0 ∀j̃ . (13.33)

We hence conclude that there cannot be any diagrams in W(j) with only external
legs j̃ (cf. Sect. 9.1).

To obtain the loopwise expansion of �(x∗, x̃∗), we start at the lowest order. To
the lowest order we have Eq. (13.5) and therefore get the pair of equations

j = −∂S(x∗, x̃∗)
∂x

= −x̃∗(1 − ψ ′(x∗)) (13.34)

j̃ = −∂S(x∗, x̃∗)
∂x̃

= −x∗ + ψ(x∗) − D x̃∗. (13.35)

The first equation, for j = 0 allows the solution x̃∗ = 〈x̃〉 = 0, which we know
to be the true one from the argument on the vanishing moments of x̃ in (13.33).
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Inserted into the second equation, we get with j̃ = −μ

x∗ = ψ(x∗)︸ ︷︷ ︸
J0φ(x∗)

+μ,

which is in line with our naive solution (11.2).
To continue to higher orders, we need to determine the propagator from the

negative inverse Hessian of S, which is

S(2)(x∗, x̃∗) =
(−x̃∗ ψ(2)(x∗) 1 − ψ(1)(x∗)

1 − ψ(1)(x∗) D

)
. (13.36)

From the general property that 〈x̃〉 = 0, we know that the correct solution of the
equation of state must expose the same property. So we may directly invert (13.36)
at the point x̃∗ = 〈x̃〉 = 0, which is

∗, 0) = (−S(2)(x∗, 0))−1 =
D

(1−ψ (x∗))2 − 1
1−ψ (x∗)

− 1
1−ψ (x∗) 0

=:
0

.

We see that to lowest order hence 〈x̃2〉 = 0, indicated by the vanishing lower right
entry. In the graphical notation we chose the direction of the arrow to indicate the
contraction with a variable x (incoming arrow) or a variable x̃ (outgoing arrow).
The upper left element is the covariance of x in Gaussian approximation. This is in
line with our naive calculation using linear response theory in Eq. (11.4).

We conclude from the argument that 〈x̃2〉 = 0 that the correction �xx to the
self-energy has to vanish as well. This can be seen by writing the second cumulant
with (12.6) as

W(2) =
(
�(2)

)−1
(13.37)

= (−S(2) + �)−1

=
[
−
(

0 1 − ψ(1)(x∗)
1 − ψ(1)(x∗) D

)
+
(

�xx �xx̃

�x̃x �x̃x̃

)]−1

.

In order for W
(2)

j̃ j̃
to vanish, we need a vanishing �xx , otherwise we would get an

entry W
(2)

j̃ j̃
∝ �xx .

The interaction vertices, correspondingly, are the higher derivatives of S. Due to
the quadratic appearance of x̃, no vertices exist that have three or more derivatives
by x̃. Because x̃∗ = 0, we see that all x̃ must be gone by differentiation for the
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vertex to contribute. The only vertex at third order therefore is

1

1!2! S
(3)
x̃xx

= − 1

2!ψ
(2)(x∗) = x̃ x

x

,

where the factor 1/2! stems from the Taylor expansion due to the second derivative
of S

(3)

x̃xx
by x. We observe that at arbitrary order n we get

1

1!n − 1!S
(n)

x̃xn−1 = − 1

n − 1!ψ
(n−1)(x∗).

We are now ready to apply the loopwise expansion of the equation of state.
We know from the general argument above that we do not need to calculate any

loop corrections to (13.34), because we know that x̃∗ ≡ 0. We obtain the one-loop
correction to the equation of state (13.35) from the diagram with one external x̃-leg

fl

∂x̃
= − = − (− 1

2!ψ
(2)(x∗))

S
(3)
x̃xx

D

(1 − ψ (x∗))2

xx=(−S(2))
−1
xx

= D

2

J0φ
(2)(x∗)

(1 − J0φ(1)(x∗))2
.

Note that there is no combinatorial factor 3 here, because there is only one variable
x̃ to choose for the external leg. So together with the lowest order (13.35) we arrive
at the self-consistency equation for x∗

j̃ = −μ = − ∂S(x∗, x̃∗)
∂x̃

−

x∗ =J0φ(x∗) + μ + D

2

J0φ
(2)(x∗)

(1 − J0φ(1)(x∗))2
.

(13.38)

Comparing to (11.5), we have recovered the same correction. But we now know that
the additional term is the next to leading order systematic correction in terms of the
fluctuations. Also, we may obtain arbitrary higher order corrections. Moreover, we
are able to obtain corrections to other moments, such as the variance by calculating
the self-energy (see exercises). From our remark further up we already know that
�xx ≡ 0, so that diagrams
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0 ≡

which have two external x-legs need to vanish and therefore do not need to be
calculated.

13.8 Problems

a) Loopwise Approximation of a One-dimensional Integral

As an example of the loopwise approximation of an integral let us again study the
system described by the action

Sl(x) = l

(
−1

2
x2 + α

3!x
3 + β

4!x
4
)

, (13.39)

but this time with β � −1, so that we cannot resort to the ordinary perturbation
expansion [see also 2, Section 2.5, p. 121]. We would like to study the system for
large l and perform a loopwise expansion for the integral

Wl = ln
∫

dx exp (Sl(x)) , (13.40)

which, in fact, determines the normalization of the distribution.
Here we choose the parameters given in Fig. 13.2 such that x∗

S = 0 remains a
stationary point for all values of l.

Calculate the contributions up to two-loop order. This two-loop approximation
of the integral is shown in Fig. 13.2 to become a good approximation as l increases
and the density becomes more localized. You may check these expressions by the
numerical solution implemented in the accompanying code.

b) Effective Action� of “φ3 + φ4-Theory” in Two-Loop
Approximation

We here want to determine the vertex-generating function � for our prototypical
“φ3 + φ4”-theory, i.e. the action (13.39). Determine the vertex-generating function
in loopwise approximation up to two-loop order, shown in Fig. 13.2. Compare your
result numerically to the true solution, using the provided python code.
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c) Equation of State in Two-Loop Approximation

Calculate the equation of state in two-loop order using the result of exercise b).
Identify the terms by the diagrams constructed with one external leg x. Convince
yourself that the terms at zero-loop order are ∝ l and have one vertex more than they
have propagators. At one-loop order, they are ∝ O(1) and have as many propagators
as vertices. At two-loop order, they are ∝ O(l−1) and have one propagator more than
vertices.

d) Self-energy of the “φ3 + φ4 Theory”

Determine the self-energy of the theory in a) at one-loop order. Calculate once as
the derivative of the one-loop approximation of � and once diagrammatically. Write
down the variance W(2)(0) in this approximation.

e) Self-energy of Self-consistency Equation

Calculate the one-loop corrections to � = �
(2)
fl , the self-energy, for the problem in

Sect. 13.7. Calculate �x̃x once from the equation of state (13.38) and once diagram-
matically. Obtain the remaining non-vanishing contribution, �x̃x̃ , diagrammatically.
You may use the python code to check your result, producing Fig. 11.1c. Why is the
number of diagrams different for these two corrections?

Looking at the relation between the second cumulants and the self-energy,
Eq. (13.37), what is the meaning of �x̃x̃? Can you guess what the intuitive meaning
of �x̃x is, by considering the response of the mean value 〈x〉 to a small perturbation
δμ, using

lim
δμ→0

1

δμ
(〈x〉∣∣

j̃=−δμ
−〈x〉∣∣

j̃=0) = − ∂2W

∂j∂j̃
.
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14Loopwise Expansion in theMSRDJ Formalism

Abstract

In this chapter we want to apply the loopwise expansion developed in Chap. 13
to a stochastic differential equation, formulated as an MSRDJ path integral,
introduced in Chap. 7. This will allow us to obtain self-consistent solutions for
the mean of the process including fluctuation corrections. It also enables the
efficient computation of higher order cumulants of the process by decomposing
them into vertex functions, as introduced in Chap. 12.

14.1 Intuitive Approach

Before embarking on this endeavor in a formal way, we would like to present the
naive approach of obtaining an expansion for small fluctuations for a stochastic
differential equation in the limit of weak noise, i.e. for weak variance of the driving
noise W

(2)
W (0) � 1 in Eq. (7.19), where WW (j) = ln ZW(j) is the cumulant-

generating functional of the stochastic increments. We want to convince ourselves
that to lowest order, the formal approach agrees to our intuition.

To illustrate the two approaches, we consider the stochastic differential equation

dx(t) = f (x(t)) dt + dW(t), (14.1)

which, in the general (possibly non-Gaussian noise) case, has the action

S[x, x̃] = x̃T(∂t x − f (x)) + WW (−x̃). (14.2)

The naive way of approximating Eq. (14.1) for small noise is the replacement of
the noise drive by its mean value 〈dW 〉(t) = δWW (0)

δj (t)
dt ≡ W

(1)
W,t (0)dt =: W̄ (t) dt
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(using that the derivative W
(1)
W,t (0) is the mean stochastic increment at time t). This

yields the ODE

∂t x = f (x(t)) + W̄ (t). (14.3)

We will now check if the lowest order loopwise expansion yields the same result. To
this end we use Eq. (13.5), i.e. �0[x, x̃] = −S[x, x̃] and obtain the pair of equations
from the equation of state (11.10)

−δS[x, x̃]
δx(t)

= δ�0[x, x̃]
δx(t)

= j (t)

−δS[x, x̃]
δx̃(t)

= δ�0[x, x̃]
δx(t)

= j̃ (t).

The explicit forms of these equations with the action (14.2) are

(
∂t + f ′(x∗(t))

)
x̃∗(t) = j (t), (14.4)

−∂t x
∗(t) + f (x∗(t)) + W

(1)
W,t (−x̃∗) = j̃ (t),

where in the first line we used integration by parts to shift the temporal derivative
from ∂tx to −∂t x̃

∗, assuming negligible boundary terms at t → ±∞.
In the absence of external fields j = j̃ = 0, the second equation is hence

identical to the naive approach Eq. (14.3), if x̃∗ ≡ 0. The first equation indeed
admits this solution. Interestingly, the first equation has only unstable solutions if
and only if the linearized dynamics for x (which is (∂t − f ′(x∗))δx see below) is
stable and vice versa. So the only finite solution of the first equation is the vanishing
solution x̃ ≡ 0.

We have anticipated the latter result from the perturbative arguments in Sect. 9.5:
to all orders the moments of x̃ vanish for j = 0. We hence know from the reciprocity
relationship Eq. (11.11) between W(1)[j, j̃ ] = (x∗, x̃∗) and �(1)[x∗, x̃∗] = (j, j̃ )

that the minimum of �[x, x̃] must be attained at x̃∗ = 〈x̃〉 = 0 for any value of
j̃ (t). Solving the equations of state (14.4) with a non-zero j (t), this property ceases
to be valid, in line with Eq. (14.4). A vanishing source j , however, does not pose
any constraint to the applicability to physical problems, since j does not have any
physical meaning; this is to say, there are no SDEs for which a non-zero source term
j 
= 0 would appear naturally.

The freedom to choose a non-zero j̃ in Eq. (14.4), on the contrary, is useful,
because it appears as the inhomogeneity of the system (see Sect. 7.5) and hence
allows us to determine the true mean value of the fields in the presence of an external
drive to the system.

Continuing the naive approach to include fluctuations, we could linearize
Eq. (14.1) around the solution x∗, defining δx(t) = x(t) − x∗(t) with the resulting
SDE for the fluctuation δx

dδx(t) = f ′(x∗(t)) δx(t) dt + dW(t) − W̄ (t)dt. (14.5)
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The equation is linear in δx and the driving noise dW(t)− W̄ (t)dt , by construction,
has zero mean. Taking the expectation value of the last equation therefore shows
that, for stable dynamics, 〈δx(t)〉 decays to 0, so δx has zero mean (is a centered
process). Its second moment is therefore identical to the second cumulant, for which
Eq. (14.5) yields the differential equation

(∂t − f ′(x∗(t)))(∂s − f ′(x∗(s)))〈δx(t)δx(s)〉 = δ(t − s) W
(2)
W,t , (14.6)

where we used that the centered increments dW(t)−W̄ (t) are uncorrelated between
t 
= s and hence have the covariance δ(t − s)W

(2)
W,t dt ds.

We now want the see if we get the same result by the formal approach. We may
therefore determine the Hessian �

(2)
0,t,s[x∗, x̃], the inverse of which, by Eq. (12.3), is

the covariance W(2)

�
(2)
0,t,s[x∗, x̃∗] ≡ δ2�0

δ{x, x̃}(t)δ{x, x̃}(s)

=
(

0 δ(t − s) (∂t + f ′(x∗))
δ(t − s) (−∂t + f ′(x∗)) −δ(t − s) W

(2)
W,t (0)

)
,

where the top left entry x̃∗(t) f ′(x∗)δ(t − s) vanishes, because we evaluate the
Hessian at the stationary point with x̃∗ ≡ 0 and we used that the noise is white,
leading to δ(t − s) in the lower right entry. We may therefore obtain the covariance

matrix as the inverse, i.e. W(2) = [�(2)
]−1

in the sense

diag(δ(t − u)) =
∫

�
(2)
0,t,s W(2)

s,u ds,

W
(2)
t,s = δ2W

δ{j, j̃}(t)δ{j, j̃ }(s) =
( 〈〈x(t)x(s)〉〉 〈〈x(t)x̃(s)〉〉

〈〈x̃(t)x(s)〉〉 〈〈x̃(t)x̃(s)〉〉
)

leading to the set of four differential equations

δ(t − u) = (∂t + f ′(x∗(t))) 〈〈x̃(t)x(u)〉〉
0 = (∂t + f ′(x∗(t))) 〈〈x̃(t)x̃(u)〉〉
0 = (−∂t + f ′(x∗(t))) 〈〈x(t)x(u)〉〉 − W

(2)
W,t (0) 〈〈x̃(t)x(u)〉〉

δ(t − u) = (−∂t + f ′(x∗(t))) 〈〈x(t)x̃(u)〉〉 − W
(2)
W,t (0) 〈〈x̃(t)x̃(s)〉〉.

For stable dynamics of x, the operator in the second equation is necessarily unstable,
because the temporal derivative has opposite sign. The only admissible finite
solution is therefore the trivial solution 〈〈x̃(t)x̃(u)〉〉 ≡ 0. The last equation therefore
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rewrites as

δ(t − u) = (−∂t + f ′(x∗(t))) 〈〈x(t)x̃(u)〉〉.

Applying the operator (−∂u + f ′(x∗(u))) to the third equation and using the last
identity we get

(∂t − f ′(x∗(t))) (∂u − f ′(x∗(u))) 〈〈x(t)x(u)〉〉 = δ(t − u) W
(2)
W,t (0),

which is the same result as obtained by the intuitive approach in Eq. (14.6).
So to lowest order in the loopwise expansion, we see that the naive approach is

identical to the systematic approach. Up to this point we have of course not gained
anything by using the formal treatment. Going to higher orders in the loopwise
expansion, however, we will obtain a systematic scheme to obtain corrections to
the naive approach. The fluctuations of δx obviously could change the mean of the
process. This is what will, by construction, be taken into account self-consistently.

14.2 Loopwise Corrections to the Effective Equation of Motion

In the following, we want to use the loopwise expansion to approximate the average
value of the stochastic variable x. Let us assume that it fulfills the stochastic
differential equation

dx + x dt = Jφ (x) dt + dW (t) , (14.7)

where

φ (x) = J

(
x − α

x3

3!
)

.

The function φ(x) can be regarded as an approximation of a typical transfer function
of a neuron and J plays the role of a coupling between the population activity and
the input to the neuron under consideration. The dynamics is one-dimensional, so it
can be interpreted as a population-level description of neuronal activity [1].

Again, dW is white noise with

〈dW (t)〉 = 0,
〈
dW (t) dW

(
t ′
)〉 = Dδtt ′ dt.

The fix points of this ODE in the noiseless case (i.e. D = 0) are

x0 := 0, x± :=
√

3!J − 1

αJ
, for

J − 1

αJ
> 0.
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Fig. 14.1 (a) Transfer function φ(x) as a function of x for the symmetry-broken phase and the
phase with 〈x〉 = 0. (b) Potential V (x) = ∫ x

x′ −Jφ(x′) dx′ including leak term in the symmetry-
broken phase with different synaptic weights, but keeping x0 = ±40 as local minima; the equation
of motion then is ∂t x = −V ′(x). (c) One realization of the stochastic process (14.7). (d) Deviation
of the fix point value for the cases of (b) depending on the strength of the non-linearity α calculated
(numerically) exact by solving the Fokker–Planck equation of Eq. (14.7) in the stationary case
(details in Sect. 14.6), in the one-loop approximation and by expanding the one-loop solution in D

to first order (which amounts to expanding the Fokker–Planck solution in D)

This situation is shown in Fig. 14.1a: As J − 1 changes sign, the number of
intersections between the identity curve x and the transfer function φ(x) changes
from a single intersection at x0 = 0 to three intersections {x0, x±}. The trivial fix
point x0 is stable as long as J < 1 and the fix points x± are stable for J > 1. For
α < 0 and 0 < J < 1 or α > 0 and J < 1, the nontrivial fix points exist, but
are unstable. In other words: If α > 0, the system becomes bistable. The system
then selects one of the two symmetric solutions depending on the initial condition
or on the realization of the randomness; this is called symmetry breaking, because
the solution then has lesser symmetry than the equations that describe the system.
If the level of excitation is high enough and if α < 0, activity explodes for too high
excitation.

Due to the fluctuations, the average limt→∞ 〈x〉 (t) will deviate from x0. This is
observed in the simulation shown in Fig. 14.1c: The mean value of the process is
slightly smaller than the prediction by the mean-field analysis, the intersection point
x+ = 40, as seen from Fig. 14.1a. We will compute this deviation in the following.
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For this, we need the action of the stochastic ODE

S[x, x̃] = x̃T
[
(∂t + 1 − J ) x + αJ

3! x3
]

+ D

2
x̃Tx̃.

We now want to calculate the vertex-generating function successively in different
orders of number of loops in the Feynman diagrams. To lowest order (13.5) we have

�0
[
x∗, x̃∗] = −S

[
x∗, x̃∗] .

We know from the general proof in Sect. 9.1 and from the remarks in Sect. 14.1 that
the true mean value of the response field needs to vanish x̃∗ = 0. The true mean
value x∗ is, so far, unknown. We have to determine it by solving the equation of
state

(
∂

∂x∗
∂

∂x̃∗

)
�
[
x∗, x̃∗] =

(
j

j̃

)
.

One of the equations will just lead to x̃∗ = 0. To convince ourselves that this is
indeed so, we here calculate this second equation as well:

∂�

∂x∗
[
x∗, x̃∗] = − (−∂t + 1 − J ) x̃∗ (t) − αJ

2

(
x∗ (t)

)2
x̃∗ (t)

+ O (loop corrections) = j

∂�

∂x̃∗
[
x∗, x̃∗] = − (∂t + 1 − J ) x∗ (t) − αJ

3!
(
x∗ (t)

)3 − Dx̃ (t)

+ O (loop corrections) = j̃ .

Next, we will be concerned with the stationary solution and drop the time deriva-
tives. This makes it much easier to determine the one-loop-contributions. They
consist of a three-point-vertex at which are attached one external amputated line,
x∗ or x̃∗, and two “normal” lines, associated with δx or δx̃, which are contracted.
The only non-zero three-point-vertices in our theory are

1

3!
δ3S

δx (s) δx (t) δx (u)
= 1

3!δ (t − s) δ (t − u) Jαx̃∗ (t) (14.8)

1

2!
δ3S

δx (s) δx (t) δx̃ (u)
= 1

2!δ (t − s) δ (t − u) Jαx∗ (t) . (14.9)
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According to the rules derived in Sect. 9.2, in Fourier domain these read

1

3!
δ3S

δX (ω) δX (ω′) δX (ω′′)
= 1

3!2πδ
(
ω + ω′ + ω′′) Jαx̃∗

1

2!
δ3S

δX (ω) δX (ω′) δX̃ (ω′′)
= 1

2!2πδ
(
ω + ω′ + ω′′) Jαx∗.

Computing the diagrammatic corrections to the equation of state at one-loop
order, we need to compute all 1PI one-loop diagrams that have one external
amputated leg; an amputated x̃∗-leg for the equation of state j̃ = δ�/δx̃∗, and an
amputated x∗-leg for the equation of state j = δ�/δx∗. As shown in Sect. 13, these
derivatives ultimately act on one of the interaction vertices. In any such diagram, this
derivative thus appears as one of the derivatives in the vertices (14.8) and (14.9). The
remaining amputated legs, according to Eq. (13.9), are multiplied in the functional
integral by a corresponding δx or δx̃; these latter variables are contracted by the
propagators (−S(2))−1 to form the lines in the diagram.

For the term ∂�
∂x̃∗ , we thus have the diagram

x̃∗
δx

δx

. (14.10)

This diagram has an amputated x̃∗-leg, because we consider the derivative of � by
x̃∗. This leg connects to the second three-point vertex (14.9). The remaining two
x-legs of this vertex are contracted by the propagator �xx . The other vertex (14.8)
does not form any contribution to this equation of state at one-loop order, because it
only has derivatives by x∗.

For the term ∂�
∂x∗ , this leads to the one-loop diagrams

3 · x∗
δx

δx

+ 2 · x∗
δx

δx̃

, (14.11)

where the first is composed of the first interaction vertex (14.8) and has an
undirected propagator �xx , the second is made of the second vertex (14.9) and has a
directed propagator �x̃x . The combinatorial factors 3 and 2 arise from the number of
possibilities to choose an x-leg to amputate. The second diagram in (14.11) vanishes
in the Ito convention because it includes a response function starting and ending at
the same vertex.

To determine the values of these diagrams, we need to know the propagator,
which is the inverse of the second derivative of the action −S(2). Limiting ourselves
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first to the stationary case, this can be achieved by going into Fourier space.
However, let us first note, how S(2) looks like in the general case:

S
(2)
t,s

[
x∗, x̃∗] =

(
Jαx̃∗ (t) x∗ (t) ∂s + 1 − J + Jα

2 (x∗ (t))2

∂t + 1 − J + Jα
2 (x∗(t))2 D

)
δ (t − s) .

(14.12)

With the abbreviations −m := 1 − J + Jα
2

(
x∗

0

)2
and D̃ := Jαx∗

0 x̃∗
0 , in Fourier

domain, this becomes for x̃∗ (t) = x̃∗
0 , x∗ (t) = x∗

0

S
(2)

ω′ω(x∗
0 , x̃∗

0 ) =
(

D̃ −iω − m

iω − m D

)
2π δ

(
ω − ω′) .

The inverse of this matrix, the propagator then becomes

�(x, x̃∗
0 )
(
ω′, ω

) =
(
−S

(2)

ω′ω
[
x∗

0 , x̃∗
0

])−1

= − 1

D̃D − (ω2 + m2
)
(

D iω + m

−iω + m D̃

)
2πδ

(
ω − ω′) .

Let us assume that x̃∗
0 = 0—we will see later that this is a consistent assumption.

Then D̃ = 0, so the propagator is given by

�(x∗
0 , x̃∗

0 )
(
ω′, ω

) =
(

D
ω2+m2

1
−iω+m

1
iω+m

0

)
2πδ

(
ω − ω′) .

Comparing to Eq. (8.11), we see that the propagator is, of course, of the same
form as in the Gaussian case, since the loopwise approximation is an approximation
around a local maximum. The back transform to time domain with Eqs. (8.12) and
(8.13) therefore reads

�
[
x∗

0 , x̃∗
0

] (
t ′, t
) =

( − D
2m

em|t−t ′| H
(
t ′ − t

)
exp

(
m
(
t ′ − t

))
H
(
t − t ′

)
exp
(
m
(
t − t ′

))
0

)
.

(14.13)

In other words: If x̃∗
0 = 0, the response functions are (anti-)causal. In this case also

the contributions of the two diagrams in Eq. (14.11) vanish as we will see in the
following.

With these results, we may evaluate the first diagram of Eq. (14.11). Due to the
two Dirac-δ in the interaction vertex in time domain, this is easiest done in time
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domain. The diagram (14.10) results in

x̃∗
δx

δx

= 1

2! ds du Sx̃(t)x(s)x(u) x(s)x(u)

= 1

2! ds du δ(t − s)δ(t − u) Jα x∗
0

−D

2m
em|t−u|

=−JαD

4m
x∗
0 .

The second diagram of Eq. (14.11) vanishes, because the response functions at equal
time points vanish. The first diagram, by the linear dependence of the interaction
vertex equation (14.8) on x̃∗ has the value

3 · x∗
δx

δx

= 3

3! ds du Sx(t)x(s)x(u) x(s)x(u)

= 3

3!
−D

2m
Jαx̃∗

0

= −JαD

4m
x̃∗
0 ,

which vanishes as well for x̃∗ = 0, showing that this value is a consistent solution
for the loopwise correction.

Inserted into the equation of state this yields the self-consistency equation for the
mean value x∗

(1 − J ) x∗
0 + αJ

3!
(
x∗

0

)3 + 1

4
Jαx∗

0D
1

1 − J + Jα
2

(
x∗

0

)2 = 0. (14.14)

We can check our result by solving the Fokker–Planck equation for the system,
which gives an (numerically) exact solution for the fix points of Eq. (14.7). The
comparison of the Fokker–Planck solution to the one-loop correction is shown in
Fig. 14.1d for different values of the coupling J .
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14.3 Corrections to the Self-energy and Self-consistency

We may determine corrections to the self-energy by forming all 1PI diagrams with
two external amputated legs. We can use these terms to obtain corrections to the
second moments of the process by obtaining the inversion:

(
−S(2)[x∗, x̃∗] + �

)
� = 1.

With (14.12) and x̃∗ ≡ 0 we obtain the set of coupled differential equations

∫
dt ′
(

0 (∂t + m) δ(t − t ′) + �xx̃(t, t
′)

(−∂t + m) δ(t − t ′) + �x̃x(t, t
′) −D δ(t − t ′) + �x̃x̃(t, t ′)

)

(14.15)

×
(

�xx(t
′, s) �xx̃(t

′, s)
�x̃x(t

′, s) 0

)
= diag(δ(t − s)).

We may write (14.15) explicitly to get two linearly independent equations

(∂t + m) �x̃x(t, s) +
∫ t

s

dt ′ �xx̃(t, t
′) �x̃x(t

′, s) = δ(t − s),

(−∂t + m) �xx(t, s) +
∫ t

−∞
dt ′ �x̃x(t, t

′)�xx(t
′, s) − D �x̃x(t, s)

+
∫ ∞

s

�x̃x̃ (t, t ′)�x̃x(t
′, s) = 0.

The integration bounds here follow from causality of the propagators �x̃x and
of the self-energy �xx̃ . We may interpret (14.15) as describing a linear stochastic
differential-convolution equation

(∂t − m) y =
∫

dt ′ �x̃x(t, t ′) y(t ′) + η(t), (14.16)

where the noise η is Gaussian and has variance

〈η(t)η(s)〉 = D δ(t − s) − �x̃x̃(t, s). (14.17)

This can be seen by constructing the action of this Gaussian process, analogous to
Eq. (8.3): The action corresponding to the pair of Eqs. (14.16) and (14.17) then has
precisely the form as given in the first line of (14.15).

The self-energy terms therefore have the interpretation to define a linear process
that has the same second-order statistics as the full non-linear problem. This is
consistent with the self-energy correcting the Gaussian part and therefore the
propagator of the system.



14.4 Self-energy Correction to the Full Propagator 199

14.4 Self-energy Correction to the Full Propagator

Instead of calculating the perturbative corrections to the second cumulants directly,
we may instead compute the self-energy first and then obtain the corrections to the
covariance function and the response function from Dyson’s equation, as explained
in Sect. 12.2. This is possible, because we expand around a Gaussian solvable
theory.

The bare propagator of the system is given by Eq. (14.13). We have Dyson’s
equation (12.8) in the form

W(2) = � − ��� + ����� − . . . .

So we need to compute all 1PI diagrams that contribute to the self-energy �.
We here restrict ourselves to one-loop corrections. We will denote the undirected
propagator as xx ≡ ≡ . At this loop order, we get three diagrams with
two amputated external legs

− x̃x̃ (t, s) = 2 ·
∗(t)

Δxx

Δxx

∗(s)

= 2 · 1

2!
Jαx∗

2!
2

xx(t, s)
2

x∼ x∼

(14.18)

− x̃x (t, s) = 2 · 2 · 2 ·
x̃x

∗(t)

Δxx

Δ

x∗(s)
+ 3 ·

Δxx

∗(t)

x

x∼
x∼

∗(s)

= 2 · 2 · 2 · 1

2!
Jαx∗

2!
2

xx x̃x(t, s) + δ(t − s) 3
Jα

3! xx(t, t)

(14.19)

(The combinatorial factors are as follows. For �x̃x̃ : 2 possibilities to connect the
inner lines of the diagram in the loop, directly or crossed. For �x̃x : 2 vertices to
choose from to connect the external x̃; 2 legs to choose from at the other vertex to
connect the external x; 2 ways to connect the internal propagator to either of the two
x-legs of the vertex. The latter factor 1/2! stems from the repeated appearance of the
interaction vertex.) The factor 3 in the last diagram comes from the 3 possibilities
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to select one of the three x-legs of the four-point interaction vertex. We cannot
construct any non-zero correction to �xx due to the causality of the response
function �xx̃ .

We may now use Dyson’s equation to compute the corrections to the covariance
and the response function. We get

W(2) = − + . . .

=
0

+
0

×

×

0 +

+

×

×
0

(14.20)

where we suppressed the combinatorial factors for clarity (they need to be taken
into account, of course). Performing the matrix multiplication, we may, for example,
obtain the perturbation correction to W

(2)
xx , the upper left element. We hence get the

corrected covariance

W(2)
xx =

+ + +

+ +

− . . . .
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We see that the contribution of the diagram Eq. (14.19), which is non-symmetric
under exchange of t ↔ s and contributes to �x̃x , appears in a symmetric manner in
the covariance, as it has to be. This result is, of course, in line with Eq. (9.10) above.
The practical advantage of this procedure is obvious: We only need to compute the
self-energy corrections once. To get the response functions W

(2)

x̃x
, we would just

have to evaluate the off-diagonal elements of the matrix Eq. (14.20).

14.5 Self-consistent One-Loop

We may replace the bare propagators that we use to construct the self-energy
diagrams by the solutions of (14.15). We then obtain a self-consistency equation
for the propagator. Calculating the correction to the self-energy to first order in the
interaction strength, we get the diagram

x̃(t )

x(s)
= 3 · αJ

3! xx(t, t) δ(t − s),

where we plugged in the full propagator �xx(t, t), which, at equal time points,
is just the variance of the process. In the interpretation given by the effective
Eq. (14.16), this approximation hence corresponds to

(∂t − m) y = αJ

2
�xx(t, t) y(t) + η(t)

= 3 · αJ

3! 〈y(t)y(t)〉 y(t) + η(t).

The last line has the interpretation that two of the three factors y are contracted,
giving 3 possible pairings. This approximation is known as the Hartree–Fock
approximation or self-consistent one-loop approximation.

14.6 Appendix: Solution by Fokker–Planck Equation

The Fokker–Planck equation corresponding to the stochastic differential equa-
tion (14.7) reads [2]

τ∂t ρ (x, t) = −∂x

(
f (x) − D

2
∂x

)
ρ (x, t) ,

f (x) = −x + J
(
x − α

3!x
3
)

.
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As we are interested in the stationary case, we set the left hand side to 0. This leads
to

(
f (x) − D

2
∂x

)
ρ0 (x) = ϕ = const. (14.21)

Since the left-hand side is the flux operator and since there are neither sinks nor
sources, the flux ϕ must vanish in the entire domain, so the constant is ϕ ≡ 0. The
general solution of (14.21) can be constructed elementary

∂x ρ0(x) = 2

D
f (x) ρ0(x)

ρ0(x) = exp
( 2

D

∫ x

f (x ′) dx ′)

= C exp
( 2

D

( (J − 1)

2
x2 − Jα

4! x4
))

,

where the choice of the lower boundary amounts to a multiplicative constant C that
is fixed by the normalization condition

1 =
∫

ρ0(x) dx.

Therefore, the full solution is given by

ρ0 (x) =
exp

(
2
D

∫ x

0 f (x ′) dx ′
)

∫∞
−∞ exp

(
2
D

(∫ x

0 f (x ′)dx ′)) dx
.
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Nomenclature

We here adapt the nomenclature from the book by Kleinert on path integrals [1]. We
denote as x our ordinary random variable or dynamical variable, depending on the
system. Further we use

• p(x) probability distribution
• 〈xn〉 n-th moment
• 〈〈xn〉〉 n-th cumulant
• S(x) ∝ ln p(x) action
• − 1

2xTAx quadratic action
• S(n) n-th derivative of action
• � = A−1 or � = (−S(2)

)−1
inverse quadratic part of action, propagator

• Z(j) = 〈exp(jTx)〉 moment-generating function[al] or partition function
• W(j) = ln Z(j) cumulant-generating function[al] or generating function of

connected diagrams; (Helmholtz) free energy
• �[x∗] = supj jTx∗ − W [j ] generating function[al] of vertex functions or one-

particle irreducible diagrams; Gibbs free energy
• �0 = −S: zero loop approximation of �

• �fl: fluctuation corrections to �

• � = �
(2)
fl self-energy
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